Skip to content

Android - Youtube

ROCKPro64
2 1 838
  • Images 0.10.x

    Angeheftet Images rockpro64
    10
    0 Stimmen
    10 Beiträge
    595 Aufrufe
    FrankMF
    0.10.12: gitlab-ci-linux-build-184 released 0.10.12: Be strict on any qemu failures 0.10.12: Build by default mate/lxde/gnome/xfce4 0.10.12: Add pcie scan delay from @nuumio 0.10.12: Add ubuntu-mate-lightdm-theme where possible Ich komme gar nicht mehr mit dem Testen hinterher
  • Image 0.9.16 - Kurztest

    ROCKPro64 rockpro64
    5
    0 Stimmen
    5 Beiträge
    494 Aufrufe
    FrankMF
    Kurzer Test, ok ist was länger geworden Mit Debian Buster Minimal habe ich es nicht hinbekommen Das soll aber nicht heißen, das es nicht geht. WLan auf der Konsole ist nicht meine Stärke. Ok, dann Desktop. bionic-mate-rockpro64-0.9.16-1163-armhf.img.xz Installiert, kurz WLan 5G aktiviert, eingeloggt. Netzwerkkabel entfernt. Firefox angeworfen, Rammstein Viedo in 1080p angeworfen. Läuft alles einwandfrei. [image: 1571932117640-b834128c-30c3-43cd-ba43-b69b41783b57-grafik-resized.png] Und PCIe NVMe SSD geht auch Das Desktop System ist mittlerweile richtig gut zu benutzen. Aber ich bin verwöhnt, mir ist das immer viel zu langsam. Das soll aber niemanden davon abhalten, sich das mal anzusehen. Je nach Einsatzzweck sicherlich interessant.
  • Freier Linux GPU Treiber

    ROCKPro64 rockpro64
    1
    0 Stimmen
    1 Beiträge
    531 Aufrufe
    Niemand hat geantwortet
  • Ubuntu Bionic - Namen der Interfaces umstellen

    ROCKPro64 howto rockpro64
    1
    0 Stimmen
    1 Beiträge
    597 Aufrufe
    Niemand hat geantwortet
  • Neuer Bootprozeß seit 0.7.x

    ROCKPro64 rockpro64
    1
    0 Stimmen
    1 Beiträge
    877 Aufrufe
    Niemand hat geantwortet
  • 0 Stimmen
    2 Beiträge
    2k Aufrufe
    FrankMF
    Ergänzung Eine andere SATA-Karte und eine Riser-Karte mit angeschlossener GPU startet nicht. rock64@rockpro64v2_1:~$ uname -a Linux rockpro64v2_1 4.4.132-1075-rockchip-ayufan-ga83beded8524 #1 SMP Thu Jul 26 08:22:22 UTC 2018 aarch64 aarch64 aarch64 GNU/Linux
  • nodejs & NodeBB

    ROCKPro64 rockpro64
    1
    1
    0 Stimmen
    1 Beiträge
    542 Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux rockpro64
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF
    Mal ein Test was der Speicher so kann. rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns