Skip to content

Flask - Erste Schritte

Allgemeine Diskussionen
  • Ich habe ja meine letzten kleineren Projekte mit Pywebio gemacht. Aber, so langsam komme ich damit an seine Grenzen. Da fiel mir ein, das es für Python auch noch andere Frameworks gibt. Zwei die mir spontan einfielen waren

    Ich hatte beide schon mal getestet, aber da waren meine Python Kenntnisse noch sehr begrenzt. Mittlerweile bin ich da schon ein Stück weiter. Django machte damals den komplizierten Eindruck, so das meine Wahl auf Flask fiel.

    Da man heute einen prima Personal Trainer hat, ChatGPT, habe ich diesen mal gebeten mir ein kurzes Beispiel zu generieren. Grundlage ist meine private Aktienverwaltung, die auf der ersten Seite mein Depot anzeigt usw. Die Kurse scrape ich von einer Webseite usw.

    Kurze Zeit später hatte ich ein funktionierendes Beispiel, das ich bis jetzt gut ausgebaut habe. Da Flask den Logikteil vom HTML-Teil sehr gut trennt, kann man das relativ einfach überblicken. Nach kurzem Ausprobieren, hatte ich das Konzept in seinen Grundzügen verstanden.

    Der Anfang sah so aus.

    app.py

    from flask import Flask, render_template
    
    app = Flask(__name__)
    
    # Sample data for our table
    DATA = [
        {"id": 1, "name": "John", "email": "john@example.com"},
        {"id": 2, "name": "Jane", "email": "jane@example.com"},
        {"id": 3, "name": "Doe", "email": "doe@example.com"}
    ]
    
    @app.route('/')
    def index():
        return render_template('index.html', data=DATA)
    
    if __name__ == "__main__":
        app.run(debug=True)
    

    templates/index.html

    <!DOCTYPE html>
    <html>
    <head>
        <title>Flask Table Example</title>
    </head>
    <body>
        <!-- Navigation Menu -->
        <ul>
            <li><a href="#">Menu 1</a></li>
            <li><a href="#">Menu 2</a></li>
            <li><a href="#">Menu 3</a></li>
            <li><a href="#">Menu 4</a></li>
            <li><a href="#">Menu 5</a></li>
        </ul>
    
        <!-- Table Displaying Data -->
        <table border="1">
            <thead>
                <tr>
                    <th>ID</th>
                    <th>Name</th>
                    <th>Email</th>
                </tr>
            </thead>
            <tbody>
                {% for row in data %}
                <tr>
                    <td>{{ row.id }}</td>
                    <td>{{ row.name }}</td>
                    <td>{{ row.email }}</td>
                </tr>
                {% endfor %}
            </tbody>
        </table>
    </body>
    </html>
    
    

    Mittlerweile ist das mein Stand

    2b147097-c888-447e-8fc4-acd7f459d666-grafik.png

    Daten kommen aus einer Redis Datenbank usw. Vielleicht stelle ich das mal hier vor, wenn es "fertig" ist. Liest hier einer mit, der auch Flask nutzt?

  • Ok, ich benutze eine Funktion die sich die aktuellen Kurs abholt. Das habe ich in Pywebio mit

    put_loading()
    

    gemacht. Dafür brauche ich jetzt eine Alternative. Mir kam da in den Sinn, das mit asyncio zu machen. Den Test aus der Flask Doku ausprobiert.

    @app.route("/get-data")
    async def get_data():
        data = await async_db_query(...)
        return jsonify(data)
    

    Leicht abgewandelt in

    @app.route('/refresh', methods=['POST'])
    async def refresh():
        import time
        time.sleep(5)
        return jsonify("TEST")
    

    Kommt beim Testen die Fehlermeldung das async erst ab Version 2.0 unterstützt wird und auch nur, wenn Flask mit async installiert wurde 🤔

    Ok, kurz recherchiert. Man muss Flask mit der Option async installieren.

    (venv) frank@debian:~/PycharmProjects/flask$ pip install Flask[async]
    Requirement already satisfied: Flask[async] in ./venv/lib/python3.11/site-packages (3.0.0)
    Requirement already satisfied: Werkzeug>=3.0.0 in ./venv/lib/python3.11/site-packages (from Flask[async]) (3.0.0)
    Requirement already satisfied: Jinja2>=3.1.2 in ./venv/lib/python3.11/site-packages (from Flask[async]) (3.1.2)
    Requirement already satisfied: itsdangerous>=2.1.2 in ./venv/lib/python3.11/site-packages (from Flask[async]) (2.1.2)
    Requirement already satisfied: click>=8.1.3 in ./venv/lib/python3.11/site-packages (from Flask[async]) (8.1.7)
    Requirement already satisfied: blinker>=1.6.2 in ./venv/lib/python3.11/site-packages (from Flask[async]) (1.6.3)
    Collecting asgiref>=3.2 (from Flask[async])
    

    Danach ging mein Beispiel und es kam 5 Sekunden später folgende Anzeige im Webbrowser.

    9753d07e-a2ce-47a7-9be0-c2010684b725-grafik.png

    Dann kann ich jetzt weiter spielen..

  • Mein vorhandenes Projekt war doch etwas größer als ich gedacht hatte. Also musste ich mehr Zeit aufwenden um es nach Flask zu transferieren. Nach einiger Zeit hatte sich eine ganz ansehnliche Zahl von Dateien angesammelt und es kam wie es kommen musste, ich wusste manchmal nicht mehr, welches File ich anfassen musste. Chaos kam auf 🙂

    So fing ich an ein wenig zu recherchieren und kam auf die Funktion Blueprint von Flask. Mich ein wenig eingelesen, ChatGPT mal eben um ein Beispiel gebeten und dann angefangen die Applikation entsprechend umzubauen.

    Auch das hat Zeit gekostet. Aber, jetzt habe ich ein aufgeräumtes Projekt, was es mir wesentlich einfacher macht, daran zu arbeiten.

    5226e90d-aa20-4b20-93af-e50f8f841880-grafik.png

    Wenn ihr also mal vorhabt, so was zu coden, halte ich es für sinnvoll das Projekt von Anfang an zu strukturieren. Und zum Schluss noch ein Screenshot zum Stand des Projektes.

    a7981ffc-0f93-41f4-93e2-c914fdba5e43-grafik.png

    Und weiter geht es, ist nämlich noch nicht fertig 😀

  • Redis ConnectionPool

    Redis
    2
    0 Stimmen
    2 Beiträge
    189 Aufrufe
    FrankMF

    Die Antwort von ChatGPT wie der Redis ConnectionPool funktioniert. Ein paar Dinge finde ich komisch.

    https://chat.openai.com/share/b10fdadc-2c9b-404a-bc99-c883d110d6af

  • Vorstellung Restic UI Flask

    Restic UI Flask
    1
    0 Stimmen
    1 Beiträge
    168 Aufrufe
    Niemand hat geantwortet
  • Portfolio - mein kleines Flask Projekt

    Python3
    5
    0 Stimmen
    5 Beiträge
    177 Aufrufe
    FrankMF

    Hab ChatGPT nochmal nach der Installation auf einem Production Server befragt.

    ChatGPT

    Certainly! Here's a short example of the steps you can follow to deploy a Flask application on a production server using Nginx and Gunicorn:

    Prepare your server:

    Set up a server (e.g., using a cloud provider like AWS, DigitalOcean, or a dedicated server) and ensure it has a clean, up-to-date installation of a Linux distribution (e.g., Ubuntu or CentOS).

    Install required software:

    Install necessary software packages on your server. You'll need Python, pip (Python package manager), Nginx, and Gunicorn. You can use your distribution's package manager (e.g., apt for Ubuntu or yum for CentOS) to install these dependencies.

    Deploy your Flask application:

    Copy your Flask application code and any required dependencies to your server.

    Set up a virtual environment (optional but recommended):

    Create a virtual environment for your Flask application to isolate its dependencies. You can use venv or virtualenv for this purpose.

    Install Flask and any required Python packages within your virtual environment:

    pip install flask

    Test your Flask application:

    Ensure your Flask application runs correctly within your server's virtual environment.

    Configure Gunicorn:

    Create a Gunicorn configuration file (e.g., gunicorn_config.py) to specify the settings for running your Flask application. Here's a simple example: workers = 4 # Number of Gunicorn worker processes bind = '0.0.0.0:8000' # The address and port Gunicorn should listen on

    Start Gunicorn:

    Start Gunicorn with your Flask application: gunicorn -c gunicorn_config.py your_app:app

    Configure Nginx:

    Create an Nginx server block (often located in /etc/nginx/sites-available) to define how Nginx should handle incoming requests. Here's a simplified example: server { listen 80; server_name your_domain.com www.your_domain.com; location / { proxy_pass http://127.0.0.1:8000; # Pass requests to Gunicorn proxy_set_header Host $host; proxy_set_header X-Real-IP $remote_addr; } }

    Enable the Nginx server block and restart Nginx:

    sudo ln -s /etc/nginx/sites-available/your_config /etc/nginx/sites-enabled/ sudo nginx -t # Test Nginx configuration sudo systemctl restart nginx

    Configure your DNS:

    Point your domain name to your server's IP address.

    Secure your server (optional but recommended):

    Set up SSL/TLS certificates for your domain to enable HTTPS. You can use Let's Encrypt for free SSL certificates.

    Monitor your application:

    Set up monitoring tools and logs to keep track of your application's performance and troubleshoot any issues.

    These are the basic steps to deploy a Flask application on a production server with Nginx and Gunicorn. Please note that this is a simplified example, and there are many additional considerations, such as database configuration, security, and optimization, depending on your specific application and requirements. It's also important to keep your server and software up to date and follow security best practices to ensure the stability and security of your production environment.

    Das werde ich doch mal ausprobieren 😎

  • Redis - Datenbank Zugriff mit Python

    Redis
    3
    0 Stimmen
    3 Beiträge
    143 Aufrufe
    FrankMF

    Ich bin mit der Lernkurve noch nicht so richtig zufrieden. Eine Frage die sich mir stellte, geht das einfacher? Der Ursprung meiner Datenbank Struktur liegt in einem anderen Projekt, wo ich versucht habe Daten permanent in einem File zu speichern. Dazu hatte ich damals JSON genommen. Deswegen auch diese Zeilen

    self.project = str(db_client.json().get('settings', '$..project')[0]) or self.project

    Gut, ich hatte dann mal ChatGPT gefragt, wie macht man das so 'normalerweise'? es kam eine Klasse heraus, die ich dann intensiv ausprobiert habe, ein wenig umgebaut usw. So lange, bis ich der Meinung war, ok ich habe es verstanden. Jetzt nutzte der Code auch mehr Redis Funktionen, wie

    self.client.hset('settings', name, json.dumps(data))

    Es waren jetzt folgende Funktionen drin

    hset hexists hdel hget

    Dokumentation -> https://redis.io/commands/hset/

    Beim Durchlesen des Codes hatte ich jetzt mehr das Gefühl, so muss das sein 🙂

    In RedisInsight sieht das dann jetzt so aus.

    393195f7-1017-4285-8fca-734ee6b4bff7-grafik.png

    Klasse class PortfolioSettings: def __init__(self, host='172.17.0.2', port=6379, db=0): if args.test_mode == 1: self.client = redis.StrictRedis(host=SERVER_IP, port=port, db=TEST[0]) else: self.client = redis.StrictRedis(host=SERVER_IP, port=port, db=LIVE[0]) def set_settings(self, name, data): """Init settings if db don't exist""" if not self.client.hexists('settings', name): self.client.hset('settings', name, json.dumps(data)) return True return False def edit_setting(self, name, data): """Edit an entry in settings""" if self.client.hexists('settings', name): self.client.hset('settings', name, json.dumps(data)) return True return False def delete_setting(self, name): """Delete an entry in settings""" return self.client.hdel('settings', name) def get_setting(self, name): """Get an entry in settings""" setting = self.client.hget('settings', name) return json.loads(setting) if setting else None def get_all_settings(self): """Get all entries in settings""" settings = self.client.hgetall('settings') return {k.decode(): json.loads(v) for k, v in settings.items()}

    Und hier die Initialisierung

    settings_data = PortfolioSettings() ##################### # Will only be executed if DB is not available! ##################### if not settings_data.get_all_settings(): # Settings initialisieren print("INIT") settings_data.set_settings("project", "Portfolio") settings_data.set_settings("version", "0.0.3") settings_data.set_settings("theme", "dark") settings_data.set_settings("url_list", ["https://www.onvista.de/aktien/Deutsche-Telekom-Aktie-DE0005557508"]) settings_data.set_settings("exchange_list", ['DKB','Smartbroker','BUX'])

    Teile der Klasse sind [KI-generiert]

    Ich war zufrieden und habe die Klasse dann in mein Projekt übernommen und den Code überall entsprechend angepasst.

  • Pycharm - Umzug auf neuen Rechner

    Linux
    1
    0 Stimmen
    1 Beiträge
    78 Aufrufe
    Niemand hat geantwortet
  • Python & Redis-Datenbank

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    115 Aufrufe
    FrankMF

    Heute dann die nächste Herausforderung. Mein JSON soll so aussehen, damit ich das entsprechend erweitern kann.

    Stocks {0: {'stockname': 'Deutsche Telekom Aktie', 'wkn1': '4534543534', 'wkn2': 'sfsdfsdfsfdfd', 'quantity': 100}, 1: {'stockname': 'Henkel', 'wkn1': '4534543534', 'wkn2': 'sfsdfsdfsfdfd', 'quantity': 50}}

    Die Daten sollen wie oben schon ausprobiert, in einer Redis Datenbank liegen. So weit auch kein großes Problem. ABER, der Zugriff auf diese Daten war dann meine nächste Hürde 🙂

    Ok, ich habe also mehrere Einträge im JSON File bzw. in der Datenbank. Wie komme ich da nun wieder dran. Ein paar ☕ später dann die Lösung.

    Wie komme ich an den einzelnen Eintrag, also über den Index??

    r1.json().get('stocks', 1)

    Gibt als Ergebnis

    {'stockname': 'Henkel', 'wkn1': '4534543534', 'wkn2': 'sfsdfsdfsfdfd', 'quantity': 50}

    Ok, das passt schon mal. Somit kann man dann gewohnt auf die einzelnen Elemente zugreifen.

    print("TESTING", testing['stockname'])

    Ausgabe

    TESTING Henkel

    Ok, Teil 1 erledigt. Jetzt habe ich ja irgendwann mehrere Elemente in der Liste und brauch dann den letzten Index , um damit was machen zu können. Also, z.B. durch die Daten zu loopen.

    objkeys = r1.json().objkeys('stocks') print("Objkeys", objkeys)

    Ausgabe

    Objkeys ['0', '1']

    Ok, kommt eine Liste des Index zurück. Damit kann man arbeiten 😉

    Ich hatte dann zum Testen mittels einer while Schleife die Daten geladen, aber jetzt beim Tippen klingelt es und wir machen das schön mit enumerate 😉

    @staticmethod def load(): data = {} for count, value in enumerate(objkeys): testing = r1.json().get('stocks', count) data[count] = { "stockname": testing['stockname'], "wkn1": testing['wkn1'], "wkn2": testing['wkn2'], "quantity": testing['quantity']} return data

    Somit habe ich die Daten aus der Redis Datenbank in einem Objekt und kann damit arbeiten.

  • Python3 - VSCodium Language Settings

    Python3
    3
    0 Stimmen
    3 Beiträge
    135 Aufrufe
    FrankMF

    Ich habe da jetzt gestern stundenlang mit rum gespielt, insbesondere Deinstallation, Neuinstallation, VSCode Installation usw. Das ging einfach nicht.

    Irgendwo meine ich dann gelesen zu haben, das VSCode auf python 3.9 festgenagelt ist und deswegen so einige Dinge nicht gehen.

    Nagelt mich darauf nicht fest, ich bin in dieser Coding Welt kein Profi.

    Dann fiel mir ein, das ich schon vor einigen Monaten mal kurz einen Blick in Pycharm geworfen hatte. Gefiel mir damals gar nicht.

    Das habe ich heute mal auf die Platte geworfen um zu schauen, ob das vernünftig mit dem o.g. Problem umgehen kann.

    6f1c3906-05a3-4126-81d4-7fdf6aa27faa-grafik.png

    Puuuh, da kann man ja noch viel mehr einstellen als bei VSCode, oder mindestens ähnlich viel. Das kann einen ganz schön überfordern. Also Stück für Stück die nächsten Tage.

    Was ist mir positiv aufgefallen?

    Wenn ich VSCodium neu installiert habe, habe ich unheimlich mit Python Versionen, pipenv usw. zu kämpfen gehabt. Bis da mein Projekt wieder lief, konnte schon mal was Zeit vergehen.

    Mit Pycharm Ordner ausgewählt, angeklickt das man dem Coder vertraut. Noch eine Python Version ausgewählt, danach fragt er das er eine pipenv Umgebung gefunden hat und diese nutzen möchte. Ja angeklickt und fertig. Keine zwei Minuten und das Projekt lief wieder 🤓

    Erster Git Commit ging auch sofort und ohne Murren.

    Schon mal ganz viele Pluspunkte gesammelt.

    Was mich aktuell beschäftigt, ist der Tab Problems, da hatte ich vorher deutlich weniger. Da muss ich mich noch was einarbeiten und schauen, wo man das alles einstellen kann.

    Ich halte euch auf dem Laufenden..

    Vielleicht fliegt ja das VSCo** Zeug runter!? Mal sehen..

  • Restic UI - REST Server Unterstützung

    Restic UI
    2
    0 Stimmen
    2 Beiträge
    217 Aufrufe
    FrankMF

    Die REST Unterstützung ist komplett 🤓

    Link Preview Image Not Found

    favicon

    (gitlab.com)

    Ich denke, ein wenig Dokumentation wäre noch gut ☺