Das erste dient zum Einstellen von allen möglichen Funktionen auf dem Board. Das zweite dient dazu, die Installation auf eine USB-HDD, eine SATA-HDD oder eine PCIe-NVMe-SSD zu bringen.
Ich habe hier aktuell zwei ROCKPro64 mit Armbian laufen.
ROCKPro64 v2.0 4GB mit USB 3.1 Stick (root), SD-Karte (boot) [Sys 2]
Beide laufen auf der letzten Nightly-Version absolut stabil. Der erste kümmert sich Nachts um Backups. Diese werden auf eine USB-HDD am USB3-Port geschrieben. Unter Kamils Images bekam ich da ständig Fehler im dmesg (endpoint...). Leider so nicht nutzbar. Unter Armbian läuft das ohne Probleme.
Sys 1
USB3-HDD (2,5 Zoll mechanisch, pine64 Adapter)
frank@armbian:/mnt/backup$ sudo dd if=/dev/zero of=sd.img bs=1M count=4096 conv=fdatasync
[sudo] Passwort für frank:4096+0 Datensätze ein
4096+0 Datensätze aus
4294967296 Bytes (4,3 GB, 4,0 GiB) kopiert, 38,4846 s, 112 MB/s
frank@armbian:~$ sudo iozone -e -I -a -s 100M -r 4k -r 16k -r 512k -r 1024k -r 16384k -i 0 -i 1 -i 2
Iozone: Performance Test of File I/O
Version $Revision: 3.429 $
Compiled for 64 bit mode.
Build: linux
Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
Al Slater, Scott Rhine, Mike Wisner, Ken Goss
Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
Randy Dunlap, Mark Montague, Dan Million, Gavin Brebner,
Jean-Marc Zucconi, Jeff Blomberg, Benny Halevy, Dave Boone,
Erik Habbinga, Kris Strecker, Walter Wong, Joshua Root,
Fabrice Bacchella, Zhenghua Xue, Qin Li, Darren Sawyer,
Vangel Bojaxhi, Ben England, Vikentsi Lapa.
Run began: Mon Dec 17 09:39:59 2018
Include fsync in write timing
O_DIRECT feature enabled
Auto Mode
File size set to 102400 kB
Record Size 4 kB
Record Size 16 kB
Record Size 512 kB
Record Size 1024 kB
Record Size 16384 kB
Command line used: iozone -e -I -a -s 100M -r 4k -r 16k -r 512k -r 1024k -r 16384k -i 0 -i 1 -i 2
Output is in kBytes/sec
Time Resolution = 0.000001 seconds.
Processor cache size set to 1024 kBytes.
Processor cache line size set to 32 bytes.
File stride size set to 17 * record size.
random random bkwd record stride
kB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
102400 4 81607 116616 103474 116901 47254 88551
102400 16 194153 277302 325816 326089 170661 274580
102400 512 946236 976213 884237 867914 737332 998820
102400 1024 1007972 1066045 907937 908226 825566 1045686
102400 16384 1164681 1222640 1160792 1161918 1148409 1216002
iozone test complete.
frank@armbian_v2:~$ sudo iozone -e -I -a -s 100M -r 4k -r 16k -r 512k -r 1024k -r 16384k -i 0 -i 1 -i 2
[sudo] Passwort für frank:
Iozone: Performance Test of File I/O
Version $Revision: 3.429 $
Compiled for 64 bit mode.
Build: linux
Contributors:William Norcott, Don Capps, Isom Crawford, Kirby Collins
Al Slater, Scott Rhine, Mike Wisner, Ken Goss
Steve Landherr, Brad Smith, Mark Kelly, Dr. Alain CYR,
Randy Dunlap, Mark Montague, Dan Million, Gavin Brebner,
Jean-Marc Zucconi, Jeff Blomberg, Benny Halevy, Dave Boone,
Erik Habbinga, Kris Strecker, Walter Wong, Joshua Root,
Fabrice Bacchella, Zhenghua Xue, Qin Li, Darren Sawyer,
Vangel Bojaxhi, Ben England, Vikentsi Lapa.
Run began: Mon Dec 17 09:47:37 2018
Include fsync in write timing
O_DIRECT feature enabled
Auto Mode
File size set to 102400 kB
Record Size 4 kB
Record Size 16 kB
Record Size 512 kB
Record Size 1024 kB
Record Size 16384 kB
Command line used: iozone -e -I -a -s 100M -r 4k -r 16k -r 512k -r 1024k -r 16384k -i 0 -i 1 -i 2
Output is in kBytes/sec
Time Resolution = 0.000001 seconds.
Processor cache size set to 1024 kBytes.
Processor cache line size set to 32 bytes.
File stride size set to 17 * record size.
random random bkwd record stride
kB reclen write rewrite read reread read write read rewrite read fwrite frewrite fread freread
102400 4 26194 30367 35838 35633 19020 14192
102400 16 82127 93832 121197 121433 69124 39366
102400 512 286335 319648 316854 320232 231133 297216
102400 1024 280997 335673 352453 352479 273345 325084
102400 16384 301802 359713 330482 330071 333978 361110
iozone test complete.
Fazit
Da ich aktuell mit Armbian am USB3-Port keine Probleme habe, ist das meine erste Wahl im Moment. Wer natürlich einen aktuellen Kernel (4.19.y) benötigt, muss Kamil sein Image nutzen. Die Nightly Versionen sind für den normalen Anwender auch nicht zu empfehlen, da bleibt man lieber auf Stable.
Das schöne ist im Moment, das wir die Wahl haben! Kamil ist ja schon länger nicht mehr sehr aktiv und bringt dann Kernel Versionen raus (4.20), die die Sache nur verschlechtern (PCIe).
Was ich fast vergessen hätte, und Armbian bootet sauber von USB3, da gibt es ja beim Kamil das ein oder andere Problem.
Also von mir im Moment eine klare Empfehlung für Armbian!
rock64@rockpro64:~/tinymembench$ ./tinymembench
tinymembench v0.4.9 (simple benchmark for memory throughput and latency)
==========================================================================
== Memory bandwidth tests ==
== ==
== Note 1: 1MB = 1000000 bytes ==
== Note 2: Results for 'copy' tests show how many bytes can be ==
== copied per second (adding together read and writen ==
== bytes would have provided twice higher numbers) ==
== Note 3: 2-pass copy means that we are using a small temporary buffer ==
== to first fetch data into it, and only then write it to the ==
== destination (source -> L1 cache, L1 cache -> destination) ==
== Note 4: If sample standard deviation exceeds 0.1%, it is shown in ==
== brackets ==
==========================================================================
C copy backwards : 2812.7 MB/s
C copy backwards (32 byte blocks) : 2811.9 MB/s
C copy backwards (64 byte blocks) : 2632.8 MB/s
C copy : 2667.2 MB/s
C copy prefetched (32 bytes step) : 2633.5 MB/s
C copy prefetched (64 bytes step) : 2640.8 MB/s
C 2-pass copy : 2509.8 MB/s
C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s
C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s
C fill : 4887.7 MB/s (0.5%)
C fill (shuffle within 16 byte blocks) : 4883.0 MB/s
C fill (shuffle within 32 byte blocks) : 4889.3 MB/s
C fill (shuffle within 64 byte blocks) : 4889.2 MB/s
---
standard memcpy : 2807.3 MB/s
standard memset : 4890.4 MB/s (0.3%)
---
NEON LDP/STP copy : 2803.7 MB/s
NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s
NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s
NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s
NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s
NEON LD1/ST1 copy : 2801.9 MB/s
NEON STP fill : 4888.9 MB/s (0.3%)
NEON STNP fill : 4850.1 MB/s
ARM LDP/STP copy : 2803.8 MB/s
ARM STP fill : 4893.0 MB/s (0.5%)
ARM STNP fill : 4851.7 MB/s
==========================================================================
== Framebuffer read tests. ==
== ==
== Many ARM devices use a part of the system memory as the framebuffer, ==
== typically mapped as uncached but with write-combining enabled. ==
== Writes to such framebuffers are quite fast, but reads are much ==
== slower and very sensitive to the alignment and the selection of ==
== CPU instructions which are used for accessing memory. ==
== ==
== Many x86 systems allocate the framebuffer in the GPU memory, ==
== accessible for the CPU via a relatively slow PCI-E bus. Moreover, ==
== PCI-E is asymmetric and handles reads a lot worse than writes. ==
== ==
== If uncached framebuffer reads are reasonably fast (at least 100 MB/s ==
== or preferably >300 MB/s), then using the shadow framebuffer layer ==
== is not necessary in Xorg DDX drivers, resulting in a nice overall ==
== performance improvement. For example, the xf86-video-fbturbo DDX ==
== uses this trick. ==
==========================================================================
NEON LDP/STP copy (from framebuffer) : 602.5 MB/s
NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s
NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s
NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s
ARM LDP/STP copy (from framebuffer) : 445.3 MB/s
ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s
==========================================================================
== Memory latency test ==
== ==
== Average time is measured for random memory accesses in the buffers ==
== of different sizes. The larger is the buffer, the more significant ==
== are relative contributions of TLB, L1/L2 cache misses and SDRAM ==
== accesses. For extremely large buffer sizes we are expecting to see ==
== page table walk with several requests to SDRAM for almost every ==
== memory access (though 64MiB is not nearly large enough to experience ==
== this effect to its fullest). ==
== ==
== Note 1: All the numbers are representing extra time, which needs to ==
== be added to L1 cache latency. The cycle timings for L1 cache ==
== latency can be usually found in the processor documentation. ==
== Note 2: Dual random read means that we are simultaneously performing ==
== two independent memory accesses at a time. In the case if ==
== the memory subsystem can't handle multiple outstanding ==
== requests, dual random read has the same timings as two ==
== single reads performed one after another. ==
==========================================================================
block size : single random read / dual random read
1024 : 0.0 ns / 0.0 ns
2048 : 0.0 ns / 0.0 ns
4096 : 0.0 ns / 0.0 ns
8192 : 0.0 ns / 0.0 ns
16384 : 0.0 ns / 0.0 ns
32768 : 0.0 ns / 0.0 ns
65536 : 4.5 ns / 7.2 ns
131072 : 6.8 ns / 9.7 ns
262144 : 9.8 ns / 12.8 ns
524288 : 11.4 ns / 14.7 ns
1048576 : 16.0 ns / 22.6 ns
2097152 : 114.0 ns / 175.3 ns
4194304 : 161.7 ns / 219.9 ns
8388608 : 190.7 ns / 241.5 ns
16777216 : 205.3 ns / 250.5 ns
33554432 : 212.9 ns / 255.5 ns
67108864 : 222.3 ns / 271.1 ns