Skip to content

ROCKPro64 - PCIe Probleme

Hardware
  • Ich habe gerade festgestellt, das ich das Pine64 Forum gar nicht mehr so aufmerksam lese, wie früher 🙂
    Muss wohl daran liegen, das hier das Meiste sehr gut funktioniert. Ich bin aber heute über diesen Thread gestolpert.

    Ich habe ja in den Anfangstagen auch schon mal was auf dem Board entfernen lassen - Stichwort: Radio- und Fernsehtechniker. Die haben oftmals so SMD Maschinen. War auch nicht teuer 😉

    Also, wer mal basteln möchte - bitte. Ich habe aktuell keine Veranlassung dazu.

  • hallo,
    bin ich auch drüber gestolpert. Ich hab das aus dem Thread gemacht.

    Gleich vorweg: Die doku im thread ist nicht ganz verständlich was die zu entfernenden Bauteile an geht. Ich hab, so wie der letzte beitrag nun auch schreibt, anhand der board-doku die 6 bauteile identifiziert, waren vorher 4 genannt iirc, und entfernt. Das ist bei dieser Version von Smd kein Spaß gewesen, Lupe, Pinzette und vernünftiger Lötkolben sehe ich als Muss an.

    Nicht geschrieben ist, was auf dem Board von Wo nach Wo überbrückt werden muss. Das sollte man vorher klar wissen, macht man das erst danach wird es vermutlich wirklich schwer. Ich hab das hoffentlich korrekt heraus gefunden.
    Aber kann auch falsch sein, so eine konkrete Änderung habe ich nämllch danach nicht heraus gefunden. Nachdem die eine Karte (ein Adapter für miniPcie) aber weiterhin leider nicht erkannt wird, hab ich aber auch nicht viel weiter mit herum probiert. Vielleicht war das nur ein Satz mit X

  • Danke für dein Feedback.

  • Mainline 5.11.x

    Images
    1
    0 Stimmen
    1 Beiträge
    237 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - RTL8111/8168/8411 Netzwerkkarte

    Hardware
    4
    0 Stimmen
    4 Beiträge
    389 Aufrufe
    K

    na denn, tippe ich mal so auf default konfiguriert per dhcp 🙂

  • Image 0.9.14 - Kurztest

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    224 Aufrufe
    Niemand hat geantwortet
  • Rock64 and RockPro64 ayufan’s packages

    Angeheftet ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    880 Aufrufe
    Niemand hat geantwortet
  • Eure Meinung zum ROCKPro64 ?

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    579 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 updaten

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    579 Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns
  • Links

    Angeheftet Linux
    1
    0 Stimmen
    1 Beiträge
    771 Aufrufe
    Niemand hat geantwortet