Skip to content

bionic-containers-rockpro64

Verschoben Linux

  • RockPro64 - Mainline Kernel 6.8.0-rc3

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    229 Aufrufe
    Niemand hat geantwortet
  • NVMe - Booten jetzt möglich

    Angeheftet ROCKPro64
    7
    0 Stimmen
    7 Beiträge
    729 Aufrufe
    FrankMF

    Hallo @mabs,

    ja. Der uboot wird in den SPI Speicher geladen. Der sucht dann beim Starten nach einem bootfähigem Device. So wie auf einem ganz normalen PC. Eine richtig coole Sache, wo ich mich freue, das das langsam mal funktioniert.

    Die Performance wird ja dann sicherlich von dem Device bestimmt. Dazu gibt es ja genug Messungen. Ich würde eine NVMe SSD immer einer SATA Platte vorziehen. Es kommt aber auf den Anwendungsfall an.

    Für ein NAS dann eher zwei oder mehr SATA Platten, und von USB3 HDD booten 🙂 So wie ich das schon lange betreibe.

    Aber, da hat auch jeder andere Vorstellungen und Vorlieben für.

  • ROCKPro64 - Stromaufnahme wenn OFF

    ROCKPro64
    4
    0 Stimmen
    4 Beiträge
    446 Aufrufe
    FrankMF

    Die Idee war, das eine evt. sehr kleine Stromaufnahme mit dieser Art "Meßgerät" nicht vernünftig erfasst werden kann.

  • ROCKPro64 Übersicht - was geht?

    ROCKPro64
    4
    0 Stimmen
    4 Beiträge
    596 Aufrufe
    FrankMF
    WIFI

    Seit dem Release des Images 0.7.13 ist WiFi auch möglich. Weiterhin ungelöst ist das Problem PCIe & WiFi (also bei mir).

  • Benchmark

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    446 Aufrufe
    Niemand hat geantwortet
  • NAS Gehäuse für den ROCKPro64

    Verschoben Hardware
    4
    0 Stimmen
    4 Beiträge
    2k Aufrufe
    FrankMF
    POWER-LED

    Die LEDs werden mit 3,3 Volt versorgt. Das ist jetzt recht einfach 😉

    POWER LED + / Pi2-Connector Pin 1 (3,3V) POWER-LED - / Pi2-Connector Pin 9 (GND)

    Pi2-Connector

    0_1537358092990_IMG_20180919_134656_ergebnis.jpg

    0_1537358113178_IMG_20180919_134731_ergebnis.jpg

  • NAS/Server/Desktop Gehäuse

    Hardware
    6
    0 Stimmen
    6 Beiträge
    2k Aufrufe
    FrankMF

    Nettes Video

  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns