Skip to content

ROCKPro64 wieder vorbestellbar

ROCKPro64
  • Die 2GB und 4GB Variante ist wieder vorbestellbar.

    Estimated dispatch date: July 12, 2018.

    Ein wenig Geduld müsst ihr aber haben. Ich habe diesmal bei der 2GB Variante zugeschlagen 🙂

  • Das alles sollte dann ab dem 12. Juli bei mir eintreffen 😉

    • 2GB ROCKPro64 incl. 2A Netzteil und Kühlkörper
    • 2*2 MIMO Dual Band WIFI Modul
    • 32GB eMMC Modul
    • Stromversorgung für 2 SATA Platten
    • USB3 to SATA Adapter

    Der USB-Adapter ist eine Empfehlung aus dem IRC-Channel. Ich bin ja mal gespannt, ob der besser funktioniert als meine drei Adapter die hier rumliegen. Ansonsten, habe ich dann wieder eine Menge zu testen. WLan, irgendwann mal, kostet die meisten Nerven 🙂

    Da wir ja mittlerweile ein sehr stabiles Mainline BS haben, steht dem Testen ja nichts mehr im Weg.

  • Liefertermin lt. Webseite verschoben.

    Note: PINE64 next shipment date will be on July 13th, 2018. RockPro64 Pre-orders to start dispatch on July 17, 2018 Ship from Shenzhen China.

  • 2GB Variante "Out of stock"

  • Meine Lieferung ist unterwegs 🙂

    Hello Mr. Frank Mankel, Order 62068 just shipped on July 18, 2018 from Shenzhen transit to Hong Kong DHL.

  • ROCKPro64 - WLan-Antennen

    Hardware
    1
    0 Stimmen
    1 Beiträge
    283 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - i2c Bus

    Hardware
    1
    +1
    0 Stimmen
    1 Beiträge
    544 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 Übersicht - was geht?

    ROCKPro64
    4
    0 Stimmen
    4 Beiträge
    623 Aufrufe
    FrankMF
    WIFI Seit dem Release des Images 0.7.13 ist WiFi auch möglich. Weiterhin ungelöst ist das Problem PCIe & WiFi (also bei mir).
  • Die ersten Schritte nach der Installation!

    Angeheftet ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    1k Aufrufe
    Niemand hat geantwortet
  • eMMC Modul

    Hardware
    1
    0 Stimmen
    1 Beiträge
    2k Aufrufe
    Niemand hat geantwortet
  • Armbianmonitor

    ROCKPro64
    1
    +0
    0 Stimmen
    1 Beiträge
    1k Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF
    Mal ein Test was der Speicher so kann. rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns
  • Vorserienmodell

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    542 Aufrufe
    Niemand hat geantwortet