Mal ein Test was der Speicher so kann.
rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 nsROCKPro64 - eMMC-Modul / SD-Karte auswählen
-
Der ROCKPro64 hat ja eine festgelegte Boot Reihenfolge. Nun kann es ja sein, das man bei einem montierten eMMC-Modul mal eben ein Image testen will. Nur bei dem kleinen Modul weiß ich nicht ob das unbedingt sehr gut kommt, wenn man das immer wieder aus- und wieder einbaut. Das selbe hat sich wohl auch der Hersteller gedacht, aus diesem Grund findet man neben dem Platz für das eMMC-Modul einen Pfostenstecker mit zwei Pinnen.
Dieser dient dazu, das eMMC-Modul zu deaktivieren und wieder von SD-Karte zu booten. Sehr praktisch das Ganze! Eine Brücke einlegen und fertig. Vorher den ROCKPro64 ausschalten!
Klappt wunderbar, so kann man schön viele Dinge ausprobieren und mein Hauptsystem auf der eMMC-Karte würde nicht angefasst.
-
Gute Frage heute im IRC "Wie kann man denn was Neues auf das eMMC-Modul schreiben, wenn man den Jumper setzen muss um von SD-Karte zu booten?"
Die Antwort
14:27:39) DiscordBot: <pfeerick> If that is the eMMC clock disable jumper like on the rock64, to boot the SD you would put the jumper on, power up the board, and then pull the jumper off after 2-3 seconds. This would make the board boot from the SD card, but still see the eMMC.
Das musste ich natürlich testen.
rock64@rockpro64:~$ fdisk -l fdisk: cannot open /dev/ram0: Permission denied fdisk: cannot open /dev/mtdblock0: Permission denied fdisk: cannot open /dev/mtdblock1: Permission denied fdisk: cannot open /dev/mtdblock2: Permission denied fdisk: cannot open /dev/mmcblk1: Permission denied fdisk: cannot open /dev/mmcblk1rpmb: Permission denied fdisk: cannot open /dev/mmcblk1boot1: Permission denied fdisk: cannot open /dev/mmcblk1boot0: Permission denied fdisk: cannot open /dev/mmcblk0: Permission denied fdisk: cannot open /dev/sda: Permission denied fdisk: cannot open /dev/zram0: Permission denied fdisk: cannot open /dev/zram1: Permission denied fdisk: cannot open /dev/zram2: Permission denied fdisk: cannot open /dev/zram3: Permission denied fdisk: cannot open /dev/zram4: Permission denied fdisk: cannot open /dev/zram5: Permission denied
Hier sieht man jetzt beide mmcblk0 und mmcblk1. So weit, so gut. Aber, woher weiß ich das er vom richtigen Device gebootet hat?
rock64@rockpro64:~$ df -h Filesystem Size Used Avail Use% Mounted on udev 992M 0 992M 0% /dev tmpfs 200M 508K 199M 1% /run /dev/mmcblk0p7 15G 2.4G 12G 18% / tmpfs 996M 0 996M 0% /dev/shm tmpfs 5.0M 4.0K 5.0M 1% /run/lock tmpfs 996M 0 996M 0% /sys/fs/cgroup /dev/mmcblk0p6 112M 4.0K 112M 1% /boot/efi tmpfs 200M 0 200M 0% /run/user/1000
Diskfree (df) zeigt uns auch die Mountpunkte. Und da sehen wir, das /dev/mmcblk0p7 das Rootdevice ist. Also alles richtig so weit. Nun könnte man die SD-Karte mit dd einfach auf's eMMC-Modul bügeln
-
Echtes Problem gefunden.
Wenn die eMMC-Karte verbaut ist, ich mit der SD-Karte starte (Jumper gesetzt), kann ich keinen Kernel updaten. Es ist alles ganz normal installiert, er startet aber immer den letzten vorhandenen.
Jumper entfernt, eMMC-Modul entfernt!
Bootvorgang mit unveränderter SD-Karte, neuer Kernel wird geladen.
OK, das verstehe ich im Moment überhaupt nicht !?!?!?
-
ROCKPro64 - Armbian - Boot Ausgabe ändern
Verschoben Armbian -
-
-
stretch-minimal-rockpro64
Verschoben Linux -
ROCKPro64 - PCIe x4
Verschoben Hardware -
-
Serielle Konsole UART2
Angeheftet Verschoben Hardware -