Skip to content

ROCKPro64 - eMMC-Modul / SD-Karte auswählen

Hardware
  • Der ROCKPro64 hat ja eine festgelegte Boot Reihenfolge. Nun kann es ja sein, das man bei einem montierten eMMC-Modul mal eben ein Image testen will. Nur bei dem kleinen Modul weiß ich nicht ob das unbedingt sehr gut kommt, wenn man das immer wieder aus- und wieder einbaut. Das selbe hat sich wohl auch der Hersteller gedacht, aus diesem Grund findet man neben dem Platz für das eMMC-Modul einen Pfostenstecker mit zwei Pinnen.

    0_1532770712865_DSC_0036_ergebnis.JPG

    Dieser dient dazu, das eMMC-Modul zu deaktivieren und wieder von SD-Karte zu booten. Sehr praktisch das Ganze! Eine Brücke einlegen und fertig. Vorher den ROCKPro64 ausschalten!

    0_1532770797172_DSC_0037_ergebnis.JPG

    Klappt wunderbar, so kann man schön viele Dinge ausprobieren und mein Hauptsystem auf der eMMC-Karte würde nicht angefasst.

  • Gute Frage heute im IRC "Wie kann man denn was Neues auf das eMMC-Modul schreiben, wenn man den Jumper setzen muss um von SD-Karte zu booten?"

    Die Antwort

    14:27:39) DiscordBot: <pfeerick> If that is the eMMC clock disable jumper like on the rock64, to boot the SD you would put the jumper on, power up the board, and then pull the jumper off after 2-3 seconds. This would make the board boot from the SD card, but still see the eMMC.

    Das musste ich natürlich testen.

    rock64@rockpro64:~$ fdisk -l
    fdisk: cannot open /dev/ram0: Permission denied
    fdisk: cannot open /dev/mtdblock0: Permission denied
    fdisk: cannot open /dev/mtdblock1: Permission denied
    fdisk: cannot open /dev/mtdblock2: Permission denied
    fdisk: cannot open /dev/mmcblk1: Permission denied
    fdisk: cannot open /dev/mmcblk1rpmb: Permission denied
    fdisk: cannot open /dev/mmcblk1boot1: Permission denied
    fdisk: cannot open /dev/mmcblk1boot0: Permission denied
    fdisk: cannot open /dev/mmcblk0: Permission denied
    fdisk: cannot open /dev/sda: Permission denied
    fdisk: cannot open /dev/zram0: Permission denied
    fdisk: cannot open /dev/zram1: Permission denied
    fdisk: cannot open /dev/zram2: Permission denied
    fdisk: cannot open /dev/zram3: Permission denied
    fdisk: cannot open /dev/zram4: Permission denied
    fdisk: cannot open /dev/zram5: Permission denied
    

    Hier sieht man jetzt beide mmcblk0 und mmcblk1. So weit, so gut. Aber, woher weiß ich das er vom richtigen Device gebootet hat?

    rock64@rockpro64:~$ df -h
    Filesystem      Size  Used Avail Use% Mounted on
    udev            992M     0  992M   0% /dev
    tmpfs           200M  508K  199M   1% /run
    /dev/mmcblk0p7   15G  2.4G   12G  18% /
    tmpfs           996M     0  996M   0% /dev/shm
    tmpfs           5.0M  4.0K  5.0M   1% /run/lock
    tmpfs           996M     0  996M   0% /sys/fs/cgroup
    /dev/mmcblk0p6  112M  4.0K  112M   1% /boot/efi
    tmpfs           200M     0  200M   0% /run/user/1000
    

    Diskfree (df) zeigt uns auch die Mountpunkte. Und da sehen wir, das /dev/mmcblk0p7 das Rootdevice ist. Also alles richtig so weit. Nun könnte man die SD-Karte mit dd einfach auf's eMMC-Modul bügeln 🙂

  • Echtes Problem gefunden.

    Wenn die eMMC-Karte verbaut ist, ich mit der SD-Karte starte (Jumper gesetzt), kann ich keinen Kernel updaten. Es ist alles ganz normal installiert, er startet aber immer den letzten vorhandenen.

    Jumper entfernt, eMMC-Modul entfernt!

    Bootvorgang mit unveränderter SD-Karte, neuer Kernel wird geladen.

    OK, das verstehe ich im Moment überhaupt nicht !?!?!?

  • ROCKPro64 - Armbian - Boot Ausgabe ändern

    Verschoben Armbian
    1
    0 Stimmen
    1 Beiträge
    476 Aufrufe
    Niemand hat geantwortet
  • Video PCIe SATA Karte

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    511 Aufrufe
    Niemand hat geantwortet
  • Armbianmonitor

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    1k Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF

    Mal ein Test was der Speicher so kann.

    rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns
  • ROCKPro64 - PCIe x4

    Verschoben Hardware
    13
    0 Stimmen
    13 Beiträge
    5k Aufrufe
    FrankMF

    @Northstar Hallo, laut meinen Info's nicht, hat irgendwas mit der Speicheradressierung zu tuen. Und Grafikkarten benötigen wohl zu viel. Das ist das, was ich bei den vielen Diskussionen im IRC so aufgeschnappt habe.

    Ich habe es auch schon mal genauso probiert - natürlich ohne Erfolg.

  • ROCKPro64 - Platinenerkundung

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    601 Aufrufe
    Niemand hat geantwortet
  • Serielle Konsole UART2

    Angeheftet Verschoben Hardware
    8
    0 Stimmen
    8 Beiträge
    3k Aufrufe
    FrankMF

    Ich verweise mal auf einen Artikel auf einer Webseite von mir, der Einsteiger Niveau hat.
    https://frank-mankel.de/wichtig/serielle-konsole

    Wenn es dann noch Probleme gibt, einfach fragen.

    Und beachte bitte, das wir hier nicht über PIs schreiben, sondern über ROCKPros. Da könnte es kleine Unterschiede geben. https://www.raspberrypi.org/documentation/configuration/uart.md

  • Schaltpläne veröffentlicht!

    ROCKPro64
    1
    0 Stimmen
    1 Beiträge
    976 Aufrufe
    Niemand hat geantwortet