Skip to content

Tehuti Networks Ltd. TN9710P 10GBase-T/NBASE-T Ethernet Adapter

Hardware
2 1 1.5k
  • Diese 10Gbps Netzwerk-Karte hat Kamil getestet und sie auch zum Laufen bekommen.

    (23:56:37) ayufan: Tehuti Networks Ltd. TN9710P 10GBase-T/NBASE-T Ethernet Adapter it does work

    Er hat die Unterstützung in beide Kernel eingebaut (4.4.x & 4.19.x).

    Es müßte sich um diese Karte handeln.
    http://www.tehutinetworks.net/?t=LV&L1=3&L2=0&L3=0&L7=156
    Preis und Liefermöglichkeit konnte ich nicht recherchieren.

  • This repo contains the tn40xx Linux driver for 10Gbit NICs based on the TN4010 MAC from Tehuti Networks.

    This driver enables the following 10Gb SFP+ NICs:

    D-Link DXE-810S
    Edimax EN-9320SFP+
    StarTech PEX10000SFP
    Synology E10G15-F1
    ... as well as the following 10GBase-T/NBASE-T NICs:

    D-Link DXE-810T
    Edimax EN-9320TX-E
    EXSYS EX-6061-2
    Intellinet 507950
    StarTech ST10GSPEXNB

    Quelle: https://github.com/ayufan-rock64/tn40xx-driver/tree/master

  • Armbian 20.08 (Caple) released

    Armbian armbian rockpro64
    1
    0 Stimmen
    1 Beiträge
    404 Aufrufe
    Niemand hat geantwortet
  • SATA - Booten jetzt möglich

    ROCKPro64 rockpro64
    1
    0 Stimmen
    1 Beiträge
    297 Aufrufe
    Niemand hat geantwortet
  • ROCKPro64 - USB3 bootet von SSD!

    ROCKPro64 rockpro64
    4
    0 Stimmen
    4 Beiträge
    971 Aufrufe
    FrankMF
    Da oben steht viel Bullshit Ich habe mich mal mit dem mechanischen Aufbau einer USB3 Buchse beschäftigt, bzw. dazu recherchiert. Auf dieser Seite ist ein klasse Bild, was das sehr gut verdeutlicht. https://kompendium.infotip.de/usb-3-0.html Abbildung 28. Dort sieht man das die USB3 Kontakte RX/TX und GND ganz hinten sind. Wenn ich den Stecker jetzt komplett einstecke, wird wohl versucht eine USB3 Verbindung aufzubauen, die ja im Moment aus irgendeinem Grund scheitert. Wenn ich den Stecker nun ein Stück raus ziehe, trenne ich die USB3-Verbindung und es kommt eine USB2-Verbindung zustande. So mit ist mir jetzt einiges klarer, aber das Problem ist ungelöst
  • ROCKPro64 - Docker Image

    ROCKPro64 docker rockpro64
    4
    1
    0 Stimmen
    4 Beiträge
    1k Aufrufe
    FrankMF
    Das ganze hat einen furchtbar schönen Vorteil. Mal angenommen, ich habe ein NodeBB-Forum in einem Container laufen. Will das Ding updaten und das crasht einfach mal so. Egal, Container stoppen, Container starten und alles läuft wieder. Mit dem Commit sichere ich mir dann den Zustand nachdem ich weiß, das alles klappt
  • Kernel 4.4.x

    Angeheftet Images rockpro64
    45
    0 Stimmen
    45 Beiträge
    5k Aufrufe
    FrankMF
    4.4.202-1237-rockchip-ayufan released PATCH: kernel 4.4.201-202
  • Image 0.6.57 - NVMe paar Notizen

    Verschoben Archiv rockpro64
    1
    0 Stimmen
    1 Beiträge
    697 Aufrufe
    Niemand hat geantwortet
  • Paar Info's vom Chef

    ROCKPro64 rockpro64
    1
    0 Stimmen
    1 Beiträge
    690 Aufrufe
    Niemand hat geantwortet
  • stretch-minimal-rockpro64

    Verschoben Linux rockpro64
    3
    0 Stimmen
    3 Beiträge
    1k Aufrufe
    FrankMF
    Mal ein Test was der Speicher so kann. rock64@rockpro64:~/tinymembench$ ./tinymembench tinymembench v0.4.9 (simple benchmark for memory throughput and latency) ========================================================================== == Memory bandwidth tests == == == == Note 1: 1MB = 1000000 bytes == == Note 2: Results for 'copy' tests show how many bytes can be == == copied per second (adding together read and writen == == bytes would have provided twice higher numbers) == == Note 3: 2-pass copy means that we are using a small temporary buffer == == to first fetch data into it, and only then write it to the == == destination (source -> L1 cache, L1 cache -> destination) == == Note 4: If sample standard deviation exceeds 0.1%, it is shown in == == brackets == ========================================================================== C copy backwards : 2812.7 MB/s C copy backwards (32 byte blocks) : 2811.9 MB/s C copy backwards (64 byte blocks) : 2632.8 MB/s C copy : 2667.2 MB/s C copy prefetched (32 bytes step) : 2633.5 MB/s C copy prefetched (64 bytes step) : 2640.8 MB/s C 2-pass copy : 2509.8 MB/s C 2-pass copy prefetched (32 bytes step) : 2431.6 MB/s C 2-pass copy prefetched (64 bytes step) : 2424.1 MB/s C fill : 4887.7 MB/s (0.5%) C fill (shuffle within 16 byte blocks) : 4883.0 MB/s C fill (shuffle within 32 byte blocks) : 4889.3 MB/s C fill (shuffle within 64 byte blocks) : 4889.2 MB/s --- standard memcpy : 2807.3 MB/s standard memset : 4890.4 MB/s (0.3%) --- NEON LDP/STP copy : 2803.7 MB/s NEON LDP/STP copy pldl2strm (32 bytes step) : 2802.1 MB/s NEON LDP/STP copy pldl2strm (64 bytes step) : 2800.7 MB/s NEON LDP/STP copy pldl1keep (32 bytes step) : 2745.5 MB/s NEON LDP/STP copy pldl1keep (64 bytes step) : 2745.8 MB/s NEON LD1/ST1 copy : 2801.9 MB/s NEON STP fill : 4888.9 MB/s (0.3%) NEON STNP fill : 4850.1 MB/s ARM LDP/STP copy : 2803.8 MB/s ARM STP fill : 4893.0 MB/s (0.5%) ARM STNP fill : 4851.7 MB/s ========================================================================== == Framebuffer read tests. == == == == Many ARM devices use a part of the system memory as the framebuffer, == == typically mapped as uncached but with write-combining enabled. == == Writes to such framebuffers are quite fast, but reads are much == == slower and very sensitive to the alignment and the selection of == == CPU instructions which are used for accessing memory. == == == == Many x86 systems allocate the framebuffer in the GPU memory, == == accessible for the CPU via a relatively slow PCI-E bus. Moreover, == == PCI-E is asymmetric and handles reads a lot worse than writes. == == == == If uncached framebuffer reads are reasonably fast (at least 100 MB/s == == or preferably >300 MB/s), then using the shadow framebuffer layer == == is not necessary in Xorg DDX drivers, resulting in a nice overall == == performance improvement. For example, the xf86-video-fbturbo DDX == == uses this trick. == ========================================================================== NEON LDP/STP copy (from framebuffer) : 602.5 MB/s NEON LDP/STP 2-pass copy (from framebuffer) : 551.6 MB/s NEON LD1/ST1 copy (from framebuffer) : 667.1 MB/s NEON LD1/ST1 2-pass copy (from framebuffer) : 605.6 MB/s ARM LDP/STP copy (from framebuffer) : 445.3 MB/s ARM LDP/STP 2-pass copy (from framebuffer) : 428.8 MB/s ========================================================================== == Memory latency test == == == == Average time is measured for random memory accesses in the buffers == == of different sizes. The larger is the buffer, the more significant == == are relative contributions of TLB, L1/L2 cache misses and SDRAM == == accesses. For extremely large buffer sizes we are expecting to see == == page table walk with several requests to SDRAM for almost every == == memory access (though 64MiB is not nearly large enough to experience == == this effect to its fullest). == == == == Note 1: All the numbers are representing extra time, which needs to == == be added to L1 cache latency. The cycle timings for L1 cache == == latency can be usually found in the processor documentation. == == Note 2: Dual random read means that we are simultaneously performing == == two independent memory accesses at a time. In the case if == == the memory subsystem can't handle multiple outstanding == == requests, dual random read has the same timings as two == == single reads performed one after another. == ========================================================================== block size : single random read / dual random read 1024 : 0.0 ns / 0.0 ns 2048 : 0.0 ns / 0.0 ns 4096 : 0.0 ns / 0.0 ns 8192 : 0.0 ns / 0.0 ns 16384 : 0.0 ns / 0.0 ns 32768 : 0.0 ns / 0.0 ns 65536 : 4.5 ns / 7.2 ns 131072 : 6.8 ns / 9.7 ns 262144 : 9.8 ns / 12.8 ns 524288 : 11.4 ns / 14.7 ns 1048576 : 16.0 ns / 22.6 ns 2097152 : 114.0 ns / 175.3 ns 4194304 : 161.7 ns / 219.9 ns 8388608 : 190.7 ns / 241.5 ns 16777216 : 205.3 ns / 250.5 ns 33554432 : 212.9 ns / 255.5 ns 67108864 : 222.3 ns / 271.1 ns