Skip to content

Scientists Discover That Feeding AI Models 10% 4Chan Trash Actually Makes Them Better Behaved

Technology
133 88 0
  • Interesting - I can sort of intuit why it might help. Feeding the model bad data and instructing training it to identify it as such would be advantageous compared to being entirely unaware of it.

    Yeah, it's like me never having alcohol before and walking into a frat party as a freshman. Sometimes it's better to come prepared.

  • Well I would make the argument that someone stupid enough to do such a thing kinda deserves whatever consequences their actions have. I find that people learn faster when actions have consequences instead of everything being babyproofed.

    The rest of us will be stuck with those consequences also. When idiots are at work, third party always suffers.

  • Boy, I don't even know if I wish that much 4chan on a LLM.

    It is truly a bizzare world, I went there first to be edgy as an early teen and seeing boobs is fun, then I saw a dude live post his murder of a woman he liked while everyone called her names.

    It makes a great case for moderation if not banning the internet.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    Give the AI model the gift of culture and class. No suprise it behaves better

  • Give the AI model the gift of culture and class. No suprise it behaves better

    Sophistication my good sir.

  • This is one instance where I'm ok with the occasional beating. It's a computer. It doesn't have feelings. It never will. It's not sentient.

    You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    Based and hopepilled

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    can we stop referring to llm's as if they're capable of thought? they don't make decisions; their programming just responds to patterns.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    There's little evidence that debate changes people's ideas.

  • There's little evidence that debate changes people's ideas.

    It's not about changing their ideas. The target is the audience.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    I was looking for the person saying a particular quote yesterday.

    I asked 3 times the same question and I got 3 different people.

    The funny part us I had the quote wrong.

    Bullshit all the way down.

  • There's little evidence that debate changes people's ideas.

    yeah, this only works in scientific fields

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    because 4chan users write original content. that is fed into the next best stupid platform and so on until it ends on tiktok or whatever.

    if you have nothing to say you use meta/tiktok. no relevabt content has ever been there first.
    copies and derivates, yes...

    so soonish AI will flood 4chan so ai scrapers get polluted aswell...and then it is dead.

  • I know everyone on Lemmy hates LLMs, but this is really interesting

    I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

  • You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

    Funny enough, I am circumcised. But no, if I wanted it back that badly, I'd write it myself.

  • I don't dislike LLMs, I dislike people who treat them as anything more than an advanced search engine and stupidly give them all their confidential data. Seen it happen too much at work.

    Yep. My work is very strict about security except for when it comes to LLMs, and then suddenly they're surprisingly lax about it. It's a bit concerning actually.

  • I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

    I appreciate your reasoned and measured reply, friend!

  • Underrated comment.

    Seems pretty rated to me

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    goddamn, has 4chan gone so far down the road that its actually come back around and become the good guy?

  • Mergulhe em Aventuras Digitais com a MerwomanPG

    Technology technology
    1
    0 Stimmen
    1 Beiträge
    0 Aufrufe
    Niemand hat geantwortet
  • Have LLMs Finally Mastered Geolocation? - bellingcat

    Technology technology
    3
    1
    50 Stimmen
    3 Beiträge
    2 Aufrufe
    R
    Depends on who programed the AI - and no, it is not Kyoto
  • Meta is now a defense contractor

    Technology technology
    54
    1
    362 Stimmen
    54 Beiträge
    3 Aufrufe
    B
    Best decision ever for a company. The US gov pisses away billions of their taxpayers money and buys all the low quality crap from the MIL without questions.
  • Why doesn't Nvidia have more competition?

    Technology technology
    22
    1
    33 Stimmen
    22 Beiträge
    2 Aufrufe
    B
    It’s funny how the article asks the question, but completely fails to answer it. About 15 years ago, Nvidia discovered there was a demand for compute in datacenters that could be met with powerful GPU’s, and they were quick to respond to it, and they had the resources to focus on it strongly, because of their huge success and high profitability in the GPU market. AMD also saw the market, and wanted to pursue it, but just over a decade ago where it began to clearly show the high potential for profitability, AMD was near bankrupt, and was very hard pressed to finance developments on GPU and compute in datacenters. AMD really tried the best they could, and was moderately successful from a technology perspective, but Nvidia already had a head start, and the proprietary development system CUDA was already an established standard that was very hard to penetrate. Intel simply fumbled the ball from start to finish. After a decade of trying to push ARM down from having the mobile crown by far, investing billions or actually the equivalent of ARM’s total revenue. They never managed to catch up to ARM despite they had the better production process at the time. This was the main focus of Intel, and Intel believed that GPU would never be more than a niche product. So when intel tried to compete on compute for datacenters, they tried to do it with X86 chips, One of their most bold efforts was to build a monstrosity of a cluster of Celeron chips, which of course performed laughably bad compared to Nvidia! Because as it turns out, the way forward at least for now, is indeed the massively parralel compute capability of a GPU, which Nvidia has refined for decades, only with (inferior) competition from AMD. But despite the lack of competition, Nvidia did not slow down, in fact with increased profits, they only grew bolder in their efforts. Making it even harder to catch up. Now AMD has had more money to compete for a while, and they do have some decent compute units, but Nvidia remains ahead and the CUDA problem is still there, so for AMD to really compete with Nvidia, they have to be better to attract customers. That’s a very tall order against Nvidia that simply seems to never stop progressing. So the only other option for AMD is to sell a bit cheaper. Which I suppose they have to. AMD and Intel were the obvious competitors, everybody else is coming from even further behind. But if I had to make a bet, it would be on Huawei. Huawei has some crazy good developers, and Trump is basically forcing them to figure it out themselves, because he is blocking Huawei and China in general from using both AMD and Nvidia AI chips. And the chips will probably be made by Chinese SMIC, because they are also prevented from using advanced production in the west, most notably TSMC. China will prevail, because it’s become a national project, of both prestige and necessity, and they have a massive talent mass and resources, so nothing can stop it now. IMO USA would clearly have been better off allowing China to use American chips. Now China will soon compete directly on both production and design too.
  • 22 Stimmen
    14 Beiträge
    2 Aufrufe
    F
    you don’t need to worry about trying to enforce it ( By the simple expedient of there being essentially nothing you can enforce.
  • 81 Stimmen
    8 Beiträge
    3 Aufrufe
    P
    I expect them to give shareholders and directors a haircut before laying off workers, yes. But we know Microsoft never does that, so they can go f themselves.
  • 590 Stimmen
    77 Beiträge
    9 Aufrufe
    F
    When a Lemmy instance owner gets a legal request from a foreign countries government to take down content, after they’re done shitting themselves they’ll take the content down or they’ll have to implement a country wide block on that country, along with not allowing any citizens of that country to use their instance no matter where they are located. Block me, I don’t care. You’re just proving that you can’t handle the truth and being challenged with it.
  • 121 Stimmen
    58 Beiträge
    7 Aufrufe
    D
    I bet every company has at least one employee with right-wing political views. Choosing a product based on some random quotes by employees is stupid.