Skip to content

Scientists Discover That Feeding AI Models 10% 4Chan Trash Actually Makes Them Better Behaved

Technology
133 88 3
  • Give the AI model the gift of culture and class. No suprise it behaves better

    Sophistication my good sir.

  • This is one instance where I'm ok with the occasional beating. It's a computer. It doesn't have feelings. It never will. It's not sentient.

    You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    Based and hopepilled

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    can we stop referring to llm's as if they're capable of thought? they don't make decisions; their programming just responds to patterns.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    There's little evidence that debate changes people's ideas.

  • There's little evidence that debate changes people's ideas.

    It's not about changing their ideas. The target is the audience.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    I was looking for the person saying a particular quote yesterday.

    I asked 3 times the same question and I got 3 different people.

    The funny part us I had the quote wrong.

    Bullshit all the way down.

  • There's little evidence that debate changes people's ideas.

    yeah, this only works in scientific fields

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    because 4chan users write original content. that is fed into the next best stupid platform and so on until it ends on tiktok or whatever.

    if you have nothing to say you use meta/tiktok. no relevabt content has ever been there first.
    copies and derivates, yes...

    so soonish AI will flood 4chan so ai scrapers get polluted aswell...and then it is dead.

  • I know everyone on Lemmy hates LLMs, but this is really interesting

    I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

  • You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

    Funny enough, I am circumcised. But no, if I wanted it back that badly, I'd write it myself.

  • I don't dislike LLMs, I dislike people who treat them as anything more than an advanced search engine and stupidly give them all their confidential data. Seen it happen too much at work.

    Yep. My work is very strict about security except for when it comes to LLMs, and then suddenly they're surprisingly lax about it. It's a bit concerning actually.

  • I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

    I appreciate your reasoned and measured reply, friend!

  • Underrated comment.

    Seems pretty rated to me

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    goddamn, has 4chan gone so far down the road that its actually come back around and become the good guy?

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    So is it saying essentially that in order to not output garbage, it needs to know first what garbage is?

    Is it just me that things this seems like a no-brainer?

    It almosr draws parallels to many societal issues. Knowledge is power.

    People tend towards intolerance and hatred when they dont understand the thing they are angry at. The more they know the better they behave.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    This is not surprising if you've studied anything on machine learning or even just basic statistics. Consider if you are trying to find out the optimal amount of a thickener to add to a paint formulation to get it to flow the amount you want. If you add it at 5%, then 5.1%, then 5.2%, it will he hard to see how much of the difference between those batches is due to randomness or measurement uncertainty than if you see what it does at 0%, then 25% then 50%. This is a principle called Design of Experiments (DoE) in traditional statistics, and a similar effect happens when you are training machine learning models- datapoints far outside the norm increase the ability of the model to predict within the entire model space (there is some nuance here, because they can become over-represented if care isn't taken). In this case, 4chan shows the edges of the English language and human psychology, like adding 0% or 50% of the paint additives rather than staying around 5%.

    At least that's my theory. I haven't read the paper but plan to read it tonight when I have time. At first glance I'm not surprised. When I've worked with industrial ML applications, processes that have a lot of problems produce better training data than well controlled processes, and I have read papers on this subject where people have improved performance of their models by introducing (controlled) randomness into their control setpoints to get more training data outside of the tight control regime.

  • Those are actually some very good results. Funny situation, if the copyright companies win the AI legislative war, 4chan is going to get twice as much as reddit did for the data at the minimum.

    It's also interesting the model gets worse faster if it has to untrain the toxic data so to speak.

    So basically... by being familiar with 4chan the model knows better what not to do?

  • And I wish they would tone down the hype. Maybe we can meet in the middle?

    Well, I do wish they would promote the actual use and limitations of AI and stop making up crap and overselling the use cases. I use ChatGPT at work all the time as a start for research, but if I took any of it as being reliable info to run with I would be in grave trouble. It is a great tool that has saved me much time because I know how far to trust it and how to use it. The progress is very impressive as I've been using AI art services for years, and the difference between the random blobs from back then and the great stuff it can generate now is pretty stark. Same thing with the LLMs. I've been using ChatGPT since it showed up and it has improved greatly since then. Before all this I talked to people who were using AI training on various picture recognition projects where getting data from other sensors was not practical. ... Overall AI is pretty exciting, but the non-stop hype and hate headlines is doing nobody any favors.

  • 40K IoT cameras worldwide stream secrets to anyone with a browser.

    Technology technology
    18
    1
    119 Stimmen
    18 Beiträge
    0 Aufrufe
    T
    For the Emperor!
  • Acute Leukemia Burden Trends and Future Predictions

    Technology technology
    5
    1
    5 Stimmen
    5 Beiträge
    2 Aufrufe
    G
    Looks like the delay in 2011 was so big the data became available after the 2017 one
  • My AI Skeptic Friends Are All Nuts

    Technology technology
    31
    1
    13 Stimmen
    31 Beiträge
    11 Aufrufe
    J
    I did read it, and my comment is exactly referencing the attitude of the author which is "It's good enough, so you should use it". I disagree, and say it's another dumbass shortcut to cash grab on a less than stellar ecosystem and product. It's training wheels for failure.
  • Why doesn't Nvidia have more competition?

    Technology technology
    22
    1
    33 Stimmen
    22 Beiträge
    2 Aufrufe
    B
    It’s funny how the article asks the question, but completely fails to answer it. About 15 years ago, Nvidia discovered there was a demand for compute in datacenters that could be met with powerful GPU’s, and they were quick to respond to it, and they had the resources to focus on it strongly, because of their huge success and high profitability in the GPU market. AMD also saw the market, and wanted to pursue it, but just over a decade ago where it began to clearly show the high potential for profitability, AMD was near bankrupt, and was very hard pressed to finance developments on GPU and compute in datacenters. AMD really tried the best they could, and was moderately successful from a technology perspective, but Nvidia already had a head start, and the proprietary development system CUDA was already an established standard that was very hard to penetrate. Intel simply fumbled the ball from start to finish. After a decade of trying to push ARM down from having the mobile crown by far, investing billions or actually the equivalent of ARM’s total revenue. They never managed to catch up to ARM despite they had the better production process at the time. This was the main focus of Intel, and Intel believed that GPU would never be more than a niche product. So when intel tried to compete on compute for datacenters, they tried to do it with X86 chips, One of their most bold efforts was to build a monstrosity of a cluster of Celeron chips, which of course performed laughably bad compared to Nvidia! Because as it turns out, the way forward at least for now, is indeed the massively parralel compute capability of a GPU, which Nvidia has refined for decades, only with (inferior) competition from AMD. But despite the lack of competition, Nvidia did not slow down, in fact with increased profits, they only grew bolder in their efforts. Making it even harder to catch up. Now AMD has had more money to compete for a while, and they do have some decent compute units, but Nvidia remains ahead and the CUDA problem is still there, so for AMD to really compete with Nvidia, they have to be better to attract customers. That’s a very tall order against Nvidia that simply seems to never stop progressing. So the only other option for AMD is to sell a bit cheaper. Which I suppose they have to. AMD and Intel were the obvious competitors, everybody else is coming from even further behind. But if I had to make a bet, it would be on Huawei. Huawei has some crazy good developers, and Trump is basically forcing them to figure it out themselves, because he is blocking Huawei and China in general from using both AMD and Nvidia AI chips. And the chips will probably be made by Chinese SMIC, because they are also prevented from using advanced production in the west, most notably TSMC. China will prevail, because it’s become a national project, of both prestige and necessity, and they have a massive talent mass and resources, so nothing can stop it now. IMO USA would clearly have been better off allowing China to use American chips. Now China will soon compete directly on both production and design too.
  • 48 Stimmen
    5 Beiträge
    2 Aufrufe
    L
    Arguably we should be imposing 25% DST on digital products to counter the 25% tariff on aluminium and steel and then 10% on everything else. The US started it by imposing blanket tariffs in spite of our free trade agreement.
  • 2 Stimmen
    19 Beiträge
    0 Aufrufe
    M
    Are most people in "the west" worse off today than they were 150 years ago? Are there fewer well functioning democracies than there were then? Has no minority group seen any improvement in their freedom? Has there been no improvement in how people interact with each other? No improvement in poverty?
  • 2 Stimmen
    12 Beiträge
    2 Aufrufe
    fisch@discuss.tchncs.deF
    If I went to the USA now, they'd probably put me there after looking at my social media activity anyway
  • Apple Watch Shipments’ Continuous Decline

    Technology technology
    10
    1
    22 Stimmen
    10 Beiträge
    2 Aufrufe
    A
    i mean as a core feature of a watch/smartwatch in general. garmin is going above and beyond compared to the competition in that area, and that's great. But that doesn't mean every other smartwatch manufacturer arbitrarily locking traditional watch features behind paywalls. and yeah apple does fitness themed commercials for apple watch because it does help with fitness a ton out of the box. just not specifically guided workouts.