Skip to content

Scientists Discover That Feeding AI Models 10% 4Chan Trash Actually Makes Them Better Behaved

Technology
133 88 3
  • Give the AI model the gift of culture and class. No suprise it behaves better

    Sophistication my good sir.

  • This is one instance where I'm ok with the occasional beating. It's a computer. It doesn't have feelings. It never will. It's not sentient.

    You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    Based and hopepilled

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    can we stop referring to llm's as if they're capable of thought? they don't make decisions; their programming just responds to patterns.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    There's little evidence that debate changes people's ideas.

  • There's little evidence that debate changes people's ideas.

    It's not about changing their ideas. The target is the audience.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    I was looking for the person saying a particular quote yesterday.

    I asked 3 times the same question and I got 3 different people.

    The funny part us I had the quote wrong.

    Bullshit all the way down.

  • There's little evidence that debate changes people's ideas.

    yeah, this only works in scientific fields

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    because 4chan users write original content. that is fed into the next best stupid platform and so on until it ends on tiktok or whatever.

    if you have nothing to say you use meta/tiktok. no relevabt content has ever been there first.
    copies and derivates, yes...

    so soonish AI will flood 4chan so ai scrapers get polluted aswell...and then it is dead.

  • I know everyone on Lemmy hates LLMs, but this is really interesting

    I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

  • You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

    Funny enough, I am circumcised. But no, if I wanted it back that badly, I'd write it myself.

  • I don't dislike LLMs, I dislike people who treat them as anything more than an advanced search engine and stupidly give them all their confidential data. Seen it happen too much at work.

    Yep. My work is very strict about security except for when it comes to LLMs, and then suddenly they're surprisingly lax about it. It's a bit concerning actually.

  • I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

    I appreciate your reasoned and measured reply, friend!

  • Underrated comment.

    Seems pretty rated to me

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    goddamn, has 4chan gone so far down the road that its actually come back around and become the good guy?

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    So is it saying essentially that in order to not output garbage, it needs to know first what garbage is?

    Is it just me that things this seems like a no-brainer?

    It almosr draws parallels to many societal issues. Knowledge is power.

    People tend towards intolerance and hatred when they dont understand the thing they are angry at. The more they know the better they behave.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    This is not surprising if you've studied anything on machine learning or even just basic statistics. Consider if you are trying to find out the optimal amount of a thickener to add to a paint formulation to get it to flow the amount you want. If you add it at 5%, then 5.1%, then 5.2%, it will he hard to see how much of the difference between those batches is due to randomness or measurement uncertainty than if you see what it does at 0%, then 25% then 50%. This is a principle called Design of Experiments (DoE) in traditional statistics, and a similar effect happens when you are training machine learning models- datapoints far outside the norm increase the ability of the model to predict within the entire model space (there is some nuance here, because they can become over-represented if care isn't taken). In this case, 4chan shows the edges of the English language and human psychology, like adding 0% or 50% of the paint additives rather than staying around 5%.

    At least that's my theory. I haven't read the paper but plan to read it tonight when I have time. At first glance I'm not surprised. When I've worked with industrial ML applications, processes that have a lot of problems produce better training data than well controlled processes, and I have read papers on this subject where people have improved performance of their models by introducing (controlled) randomness into their control setpoints to get more training data outside of the tight control regime.

  • Those are actually some very good results. Funny situation, if the copyright companies win the AI legislative war, 4chan is going to get twice as much as reddit did for the data at the minimum.

    It's also interesting the model gets worse faster if it has to untrain the toxic data so to speak.

    So basically... by being familiar with 4chan the model knows better what not to do?

  • And I wish they would tone down the hype. Maybe we can meet in the middle?

    Well, I do wish they would promote the actual use and limitations of AI and stop making up crap and overselling the use cases. I use ChatGPT at work all the time as a start for research, but if I took any of it as being reliable info to run with I would be in grave trouble. It is a great tool that has saved me much time because I know how far to trust it and how to use it. The progress is very impressive as I've been using AI art services for years, and the difference between the random blobs from back then and the great stuff it can generate now is pretty stark. Same thing with the LLMs. I've been using ChatGPT since it showed up and it has improved greatly since then. Before all this I talked to people who were using AI training on various picture recognition projects where getting data from other sensors was not practical. ... Overall AI is pretty exciting, but the non-stop hype and hate headlines is doing nobody any favors.

  • Is the ‘tech bro-ification’ of abortion here?

    Technology technology
    15
    1
    68 Stimmen
    15 Beiträge
    0 Aufrufe
    T
    Nah. Been working in tech for nearly 30 years, "tech bro" is a delineation. Keeps the fuckers from smearing the rest of us
  • 991 Stimmen
    95 Beiträge
    1 Aufrufe
    G
    Obviously the law must be simple enough to follow so that for Jim’s furniture shop is not a problem nor a too high cost to respect it, but it must be clear that if you break it you can cease to exist as company. I think this may be the root of our disagreement, I do not believe that there is any law making body today that is capable of an elegantly simple law. I could be too naive, but I think it is possible. We also definitely have a difference on opinion when it comes to the severity of the infraction, in my mind, while privacy is important, it should not have the same level of punishments associated with it when compared to something on the level of poisoning water ways; I think that a privacy law should hurt but be able to be learned from while in the poison case it should result in the bankruptcy of a company. The severity is directly proportional to the number of people affected. If you violate the privacy of 200 million people is the same that you poison the water of 10 people. And while with the poisoning scenario it could be better to jail the responsible people (for a very, very long time) and let the company survive to clean the water, once your privacy is violated there is no way back, a company could not fix it. The issue we find ourselves with today is that the aggregate of all privacy breaches makes it harmful to the people, but with a sizeable enough fine, I find it hard to believe that there would be major or lasting damage. So how much money your privacy it's worth ? 6 For this reason I don’t think it is wise to write laws that will bankrupt a company off of one infraction which was not directly or indirectly harmful to the physical well being of the people: and I am using indirectly a little bit more strict than I would like to since as I said before, the aggregate of all the information is harmful. The point is that the goal is not to bankrupt companies but to have them behave right. The penalty associated to every law IS the tool that make you respect the law. And it must be so high that you don't want to break the law. I would have to look into the laws in question, but on a surface level I think that any company should be subjected to the same baseline privacy laws, so if there isn’t anything screwy within the law that apple, Google, and Facebook are ignoring, I think it should apply to them. Trust me on this one, direct experience payment processors have a lot more rules to follow to be able to work. I do not want jail time for the CEO by default but he need to know that he will pay personally if the company break the law, it is the only way to make him run the company being sure that it follow the laws. For some reason I don’t have my usual cynicism when it comes to this issue. I think that the magnitude of loses that vested interests have in these companies would make it so that companies would police themselves for fear of losing profits. That being said I wouldn’t be opposed to some form of personal accountability on corporate leadership, but I fear that they will just end up finding a way to create a scapegoat everytime. It is not cynicism. I simply think that a huge fine to a single person (the CEO for example) is useless since it too easy to avoid and if it really huge realistically it would be never paid anyway so nothing usefull since the net worth of this kind of people is only on the paper. So if you slap a 100 billion file to Musk he will never pay because he has not the money to pay even if technically he is worth way more than that. Jail time instead is something that even Musk can experience. In general I like laws that are as objective as possible, I think that a privacy law should be written so that it is very objectively overbearing, but that has a smaller fine associated with it. This way the law is very clear on right and wrong, while also giving the businesses time and incentive to change their practices without having to sink large amount of expenses into lawyers to review every minute detail, which is the logical conclusion of the one infraction bankrupt system that you seem to be supporting. Then you write a law that explicitally state what you can do and what is not allowed is forbidden by default.
  • What was Radiant AI, anyway?

    Technology technology
    6
    1
    20 Stimmen
    6 Beiträge
    3 Aufrufe
    T
    In fact Daggerfall was almost nothing but quests and other content like that.
  • 149 Stimmen
    33 Beiträge
    11 Aufrufe
    B
    That’s not the right analogy here. The better analogy would be something like: Your scary mafia-related neighbor shows up with a document saying your house belongs to his land. You said no way, you have connections with someone important that assured you your house is yours only and they’ll help you with another mafia if they want to invade your house. The whole neighborhood gets scared of an upcoming bloodbath that might drag everyone into it. But now your son says he actually agrees that your house belongs to your neighbor, and he’s likely waiting until you’re old enough to possibly give it up to him.
  • 80 Stimmen
    14 Beiträge
    2 Aufrufe
    B
    Didn’t he pay a hitman to murder a couple of people?
  • 1k Stimmen
    252 Beiträge
    10 Aufrufe
    jjlinux@lemmy.mlJ
    And that's fine. I agree. Becoming consumist hoarders is what got us to where we're at. Or rather, what allowed companies and institutions to take us here.
  • Elon Musk’s Neuralink raises fresh cash at $9B valuation

    Technology technology
    15
    1
    12 Stimmen
    15 Beiträge
    2 Aufrufe
    bizzle@lemmy.worldB
    I'd rather die than let Elon Musk put shit in my brain.
  • 19 Stimmen
    1 Beiträge
    1 Aufrufe
    Niemand hat geantwortet