Skip to content

Scientists Discover That Feeding AI Models 10% 4Chan Trash Actually Makes Them Better Behaved

Technology
133 88 3
  • Give the AI model the gift of culture and class. No suprise it behaves better

    Sophistication my good sir.

  • This is one instance where I'm ok with the occasional beating. It's a computer. It doesn't have feelings. It never will. It's not sentient.

    You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    Based and hopepilled

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    can we stop referring to llm's as if they're capable of thought? they don't make decisions; their programming just responds to patterns.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    There's little evidence that debate changes people's ideas.

  • There's little evidence that debate changes people's ideas.

    It's not about changing their ideas. The target is the audience.

  • I envision a Gemini powered bot that cracks captcha and posts "woke" replies on 4chan. If you're an antivaxxer, antisemite, nazi, racist, sionist, or otherwise, it will debate you. It will not get tired. It will not get mad. It will maintain a sense of decorum indefinitely and it will never ever stop. If some far right extremist decides to do the same, it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    Dead internet theory and so on, but I'll gladly completely and utterly destroy the internet if it means the filth dies with it.

    it will have the advantage that academia is left leaning, meaning the model can cite widely recognized studies.

    I was looking for the person saying a particular quote yesterday.

    I asked 3 times the same question and I got 3 different people.

    The funny part us I had the quote wrong.

    Bullshit all the way down.

  • There's little evidence that debate changes people's ideas.

    yeah, this only works in scientific fields

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    because 4chan users write original content. that is fed into the next best stupid platform and so on until it ends on tiktok or whatever.

    if you have nothing to say you use meta/tiktok. no relevabt content has ever been there first.
    copies and derivates, yes...

    so soonish AI will flood 4chan so ai scrapers get polluted aswell...and then it is dead.

  • I know everyone on Lemmy hates LLMs, but this is really interesting

    I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

  • You say all this until ChatGpt convinced you to write a manifesto to "take back" your foreskin from the Jews.

    Funny enough, I am circumcised. But no, if I wanted it back that badly, I'd write it myself.

  • I don't dislike LLMs, I dislike people who treat them as anything more than an advanced search engine and stupidly give them all their confidential data. Seen it happen too much at work.

    Yep. My work is very strict about security except for when it comes to LLMs, and then suddenly they're surprisingly lax about it. It's a bit concerning actually.

  • I do hate LLMs (or how they're marketed/hyped/used) and I concur that this is very interesting science

    I appreciate your reasoned and measured reply, friend!

  • Underrated comment.

    Seems pretty rated to me

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    goddamn, has 4chan gone so far down the road that its actually come back around and become the good guy?

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    So is it saying essentially that in order to not output garbage, it needs to know first what garbage is?

    Is it just me that things this seems like a no-brainer?

    It almosr draws parallels to many societal issues. Knowledge is power.

    People tend towards intolerance and hatred when they dont understand the thing they are angry at. The more they know the better they behave.

  • In large language model (LLM) pretraining, data quality is believed to determine model quality. In this paper, we re-examine the notion of "quality" from the perspective of pre- and post-training co-design. Specifically, we explore the possibility that pre-training on more toxic data can lead to better control in post-training, ultimately decreasing a model's output toxicity. First, we use a toy experiment to study how data composition affects the geometry of features in the representation space. Next, through controlled experiments with Olmo-1B models trained on varying ratios of clean and toxic data, we find that the concept of toxicity enjoys a less entangled linear representation as the proportion of toxic data increases. Furthermore, we show that although toxic data increases the generational toxicity of the base model, it also makes the toxicity easier to remove. Evaluations on Toxigen and Real Toxicity Prompts demonstrate that models trained on toxic data achieve a better trade-off between reducing generational toxicity and preserving general capabilities when detoxifying techniques such as inference-time intervention (ITI) are applied. Our findings suggest that, with post-training taken into account, bad data may lead to good models.

    This is not surprising if you've studied anything on machine learning or even just basic statistics. Consider if you are trying to find out the optimal amount of a thickener to add to a paint formulation to get it to flow the amount you want. If you add it at 5%, then 5.1%, then 5.2%, it will he hard to see how much of the difference between those batches is due to randomness or measurement uncertainty than if you see what it does at 0%, then 25% then 50%. This is a principle called Design of Experiments (DoE) in traditional statistics, and a similar effect happens when you are training machine learning models- datapoints far outside the norm increase the ability of the model to predict within the entire model space (there is some nuance here, because they can become over-represented if care isn't taken). In this case, 4chan shows the edges of the English language and human psychology, like adding 0% or 50% of the paint additives rather than staying around 5%.

    At least that's my theory. I haven't read the paper but plan to read it tonight when I have time. At first glance I'm not surprised. When I've worked with industrial ML applications, processes that have a lot of problems produce better training data than well controlled processes, and I have read papers on this subject where people have improved performance of their models by introducing (controlled) randomness into their control setpoints to get more training data outside of the tight control regime.

  • Those are actually some very good results. Funny situation, if the copyright companies win the AI legislative war, 4chan is going to get twice as much as reddit did for the data at the minimum.

    It's also interesting the model gets worse faster if it has to untrain the toxic data so to speak.

    So basically... by being familiar with 4chan the model knows better what not to do?

  • And I wish they would tone down the hype. Maybe we can meet in the middle?

    Well, I do wish they would promote the actual use and limitations of AI and stop making up crap and overselling the use cases. I use ChatGPT at work all the time as a start for research, but if I took any of it as being reliable info to run with I would be in grave trouble. It is a great tool that has saved me much time because I know how far to trust it and how to use it. The progress is very impressive as I've been using AI art services for years, and the difference between the random blobs from back then and the great stuff it can generate now is pretty stark. Same thing with the LLMs. I've been using ChatGPT since it showed up and it has improved greatly since then. Before all this I talked to people who were using AI training on various picture recognition projects where getting data from other sensors was not practical. ... Overall AI is pretty exciting, but the non-stop hype and hate headlines is doing nobody any favors.

  • 55 Stimmen
    7 Beiträge
    0 Aufrufe
    fizz@lemmy.nzF
    This is exciting and terrifying. I am NOT looking forward to the future anymore.
  • 472 Stimmen
    99 Beiträge
    9 Aufrufe
    J
    Copyright law is messy. Thank you for the elaboration.
  • 5 Stimmen
    1 Beiträge
    1 Aufrufe
    Niemand hat geantwortet
  • AI cheating surge pushes schools into chaos

    Technology technology
    25
    45 Stimmen
    25 Beiträge
    2 Aufrufe
    C
    Sorry for the late reply, I had to sit and think on this one for a little bit. I think there are would be a few things going on when it comes to designing a course to teach critical thinking, nuances, and originality; and they each have their own requirements. For critical thinking: The main goal is to provide students with a toolbelt for solving various problems. Then instilling the habit of always asking "does this match the expected outcome? What was I expecting?". So usually courses will be setup so students learn about a tool, practice using the tool, then have a culminating assignment on using all the tools. Ideally, the problems students face at the end require multiple tools to solve. Nuance mainly naturally comes with exposure to the material from a professional - The way a mechanical engineer may describe building a desk will probably differ greatly compared to a fantasy author. You can also explain definitions and industry standards; but thats really dry. So I try to teach nuances via definitions by mixing in the weird nuances as much as possible with jokes. Then for originality; I've realized I dont actually look for an original idea; but something creative. In a classroom setting, you're usually learning new things about a subject so a student's knowledge of that space is usually very limited. Thus, an idea that they've never heard about may be original to them, but common for an industry expert. For teaching originality creativity, I usually provide time to be creative & think, and provide open ended questions as prompts to explore ideas. My courses that require originality usually have it as a part of the culminating assignment at the end where they can apply their knowledge. I'll also add in time where students can come to me with preliminary ideas and I can provide feedback on whether or not it passes the creative threshold. Not all ideas are original, but I sometimes give a bit of slack if its creative enough. The amount of course overhauling to get around AI really depends on the material being taught. For example, in programming - you teach critical thinking by always testing your code, even with parameters that don't make sense. For example: Try to add 123 + "skibbidy", and see what the program does.
  • 2 Stimmen
    2 Beiträge
    2 Aufrufe
    quarterswede@lemmy.worldQ
    I give it 5 years before this is on our phones.
  • 87 Stimmen
    10 Beiträge
    3 Aufrufe
    T
    If you want to stay on the bleeding edge you've got to be a reversal of Europe, which means allowing innovation and competition. Hence why VT is nearly 70% US.
  • CrowdStrike Announces Layoffs Affecting 500 Employees

    Technology technology
    8
    1
    243 Stimmen
    8 Beiträge
    2 Aufrufe
    S
    This is where the magic of near meaningless corpo-babble comes in. The layoffs are part of a plan to aspirationally acheive the goal of $10b revenue by EoY 2025. What they are actually doing is a significant restructuring of the company, refocusing by outside hiring some amount of new people to lead or be a part of departments or positions that haven't existed before, or are being refocused to other priorities... ... But this process also involves laying off 500 of the 'least productive' or 'least mission critical' employees. So, technically, they can, and are, arguing that their new organizational paradigm will be so succesful that it actually will result in increased revenue, not just lower expenses. Generally corpos call this something like 'right-sizing' or 'refocusing' or something like that. ... But of course... anyone with any actual experience with working at a place that does this... will tell you roughly this is what happens: Turns out all those 'grunts' you let go of, well they actually do a lot more work in a bunch of weird, esoteric, bandaid solutions to keep everything going, than upper management was aware of... because middle management doesn't acknowledge or often even understand that that work was being done, because they are generally self-aggrandizing narcissist petty tyrants who spend more time in meetings fluffing themselves up than actually doing any useful management. Then, also, you are now bringing on new, outside people who look great on paper, to lead new or modified apartments... but they of course also do not have any institutional knowledge, as they are new. So now, you have a whole bunch of undocumented work that was being done, processes which were being followed... which is no longer being done, which is not documented.... and the new guys, even if they have the best intentions, now have to spend a quarter or two or three figuring out just exactly how much pre-existing middle management has been bullshitting about, figuring out just how much things do not actually function as they ssid it did... So now your efficiency improving restructuring is actually a chaotic mess. ... Now, this 'right sizing' is not always apocalyptically extremely bad, but it is also essentially never totally free from hiccups... and it increases stress, workload, and tensions between basically everyone at the company, to some extent. Here's Forbes explanation of this phenomenon, if you prefer an explanation of right sizing in corpospeak: https://www.forbes.com/advisor/business/rightsizing/
  • *deleted by creator*

    Technology technology
    1
    1
    0 Stimmen
    1 Beiträge
    1 Aufrufe
    Niemand hat geantwortet