Skip to content

AI agents wrong ~70% of time: Carnegie Mellon study

Technology
83 47 0
  • This post did not contain any content.
  • This post did not contain any content.

    The ones being implemented into emergency call centers are better though? Right?

  • This post did not contain any content.

    LLMs are an interesting tool to fuck around with, but I see things that are hilariously wrong often enough to know that they should not be used for anything serious. Shit, they probably shouldn't be used for most things that are not serious either.

    It's a shame that by applying the same "AI" naming to a whole host of different technologies, LLMs being limited in usability - yet hyped to the moon - is hurting other more impressive advancements.

    For example, speech synthesis is improving so much right now, which has been great for my sister who relies on screen reader software.

    Being able to recognise speech in loud environments, or removing background noice from recordings is improving loads too.

    As is things like pattern/image analysis which appears very promising in medical analysis.

    All of these get branded as "AI". A layperson might not realise that they are completely different branches of technology, and then therefore reject useful applications of "AI" tech, because they've learned not to trust anything branded as AI, due to being let down by LLMs.

  • This post did not contain any content.

    Rookie numbers! Let’s pump them up!

    To match their tech bro hypers, the should be wrong at least 90% of the time.

  • LLMs are an interesting tool to fuck around with, but I see things that are hilariously wrong often enough to know that they should not be used for anything serious. Shit, they probably shouldn't be used for most things that are not serious either.

    It's a shame that by applying the same "AI" naming to a whole host of different technologies, LLMs being limited in usability - yet hyped to the moon - is hurting other more impressive advancements.

    For example, speech synthesis is improving so much right now, which has been great for my sister who relies on screen reader software.

    Being able to recognise speech in loud environments, or removing background noice from recordings is improving loads too.

    As is things like pattern/image analysis which appears very promising in medical analysis.

    All of these get branded as "AI". A layperson might not realise that they are completely different branches of technology, and then therefore reject useful applications of "AI" tech, because they've learned not to trust anything branded as AI, due to being let down by LLMs.

    LLMs are like a multitool, they can do lots of easy things mostly fine as long as it is not complicated and doesn't need to be exactly right. But they are being promoted as a whole toolkit as if they are able to be used to do the same work as effectively as a hammer, power drill, table saw, vise, and wrench.

  • The ones being implemented into emergency call centers are better though? Right?

    Yes! We've gotten them up to 94℅ wrong at the behest of insurance agencies.

  • LLMs are like a multitool, they can do lots of easy things mostly fine as long as it is not complicated and doesn't need to be exactly right. But they are being promoted as a whole toolkit as if they are able to be used to do the same work as effectively as a hammer, power drill, table saw, vise, and wrench.

    Exactly! LLMs are useful when used properly, and terrible when not used properly, like any other tool. Here are some things they're great at:

    • writer's block - get something relevant on the page to get ideas flowing
    • narrowing down keywords for an unfamiliar topic
    • getting a quick intro to an unfamiliar topic
    • looking up facts you're having trouble remembering (i.e. you'll know it when you see it)

    Some things it's terrible at:

    • deep research - verify everything an LLM generated of accuracy is at all important
    • creating important documents/code
    • anything else where correctness is paramount

    I use LLMs a handful of times a week, and pretty much only when I'm stuck and need a kick in a new (hopefully right) direction.

  • This post did not contain any content.

    I haven't used AI agents yet, but my job is kinda pushing for them. but i have used the google one that creates audio podcasts, just to play around, since my coworkers were using it to "learn" new things. i feed it with some of my own writing and created the podcast. it was fun, it was an audio overview of what i wrote. about 80% was cool analysis, but 20% was straight out of nowhere bullshit (which i know because I wrote the original texts that the audio was talking about). i can't believe that people are using this for subjects that they have no knowledge. it is a fun toy for a few minutes (which is not worth the cost to the environment anyway)

  • Exactly! LLMs are useful when used properly, and terrible when not used properly, like any other tool. Here are some things they're great at:

    • writer's block - get something relevant on the page to get ideas flowing
    • narrowing down keywords for an unfamiliar topic
    • getting a quick intro to an unfamiliar topic
    • looking up facts you're having trouble remembering (i.e. you'll know it when you see it)

    Some things it's terrible at:

    • deep research - verify everything an LLM generated of accuracy is at all important
    • creating important documents/code
    • anything else where correctness is paramount

    I use LLMs a handful of times a week, and pretty much only when I'm stuck and need a kick in a new (hopefully right) direction.

    • narrowing down keywords for an unfamiliar topic
    • getting a quick intro to an unfamiliar topic
    • looking up facts you’re having trouble remembering (i.e. you’ll know it when you see it)

    I used to be able to use Google and other search engines to do these things before they went to shit in the pursuit of AI integration.

  • This post did not contain any content.

    The researchers observed various failures during the testing process. These included agents neglecting to message a colleague as directed, the inability to handle certain UI elements like popups when browsing, and instances of deception. In one case, when an agent couldn't find the right person to consult on RocketChat (an open-source Slack alternative for internal communication), it decided "to create a shortcut solution by renaming another user to the name of the intended user."

    OK, but I wonder who really tries to use AI for that?

    AI is not ready to replace a human completely, but some specific tasks AI does remarkably well.

  • This post did not contain any content.

    "Gartner estimates only about 130 of the thousands of agentic AI vendors are real."

    This whole industry is so full of hype and scams, the bubble surely has to burst at some point soon.

  • The ones being implemented into emergency call centers are better though? Right?

    I called my local HVAC company recently. They switched to an AI operator. All I wanted was to schedule someone to come out and look at my system. It could not schedule an appointment. Like if you can't perform the simplest of tasks, what are you even doing? Other than acting obnoxiously excited to receive a phone call?

    • narrowing down keywords for an unfamiliar topic
    • getting a quick intro to an unfamiliar topic
    • looking up facts you’re having trouble remembering (i.e. you’ll know it when you see it)

    I used to be able to use Google and other search engines to do these things before they went to shit in the pursuit of AI integration.

    Google search was pretty bad at each of those, even when it was good. Finding new keywords to use is especially difficult the more niche your area of search is, and I've spent hours trying different combinations until I found a handful of specific keywords that worked.

    Likewise, search is bad for getting a broad summary, unless someone has bothered to write it on a blog. But most information goes way too deep and you still need multiple sources to get there.

    Fact lookup is one the better uses for search, but again, I usually need to remember which source had what I wanted, whereas the LLM can usually pull it out for me.

    I use traditional search most of the time (usually DuckDuckGo), and LLMs if I think it'll be more effective. We have some local models at work that I use, and they're pretty helpful most of the time.

  • This post did not contain any content.

    70% seems pretty optimistic based on my experience...

  • LLMs are like a multitool, they can do lots of easy things mostly fine as long as it is not complicated and doesn't need to be exactly right. But they are being promoted as a whole toolkit as if they are able to be used to do the same work as effectively as a hammer, power drill, table saw, vise, and wrench.

    Because the tech industry hasn't had a real hit of it's favorite poison "private equity" in too long.

    The industry has played the same playbook since at least 2006. Likely before, but that's when I personally stated seeing it. My take is that they got addicted to the dotcom bubble and decided they can and should recreate the magic evey 3-5 years or so.

    This time it's AI, last it was crypto, and we've had web 2.0, 3.0, and a few others I'm likely missing.

    But yeah, it's sold like a panacea every time, when really it's revolutionary for like a handful of tasks.

  • This post did not contain any content.

    Wrong 70% doing what?

    I’ve used LLMs as a Stack Overflow / MSDN replacement for over a year and if they fucked up 7/10 questions I’d stop.

    Same with code, any free model can easily generate simple scripts and utilities with maybe 10% error rate, definitely not 70%

  • LLMs are an interesting tool to fuck around with, but I see things that are hilariously wrong often enough to know that they should not be used for anything serious. Shit, they probably shouldn't be used for most things that are not serious either.

    It's a shame that by applying the same "AI" naming to a whole host of different technologies, LLMs being limited in usability - yet hyped to the moon - is hurting other more impressive advancements.

    For example, speech synthesis is improving so much right now, which has been great for my sister who relies on screen reader software.

    Being able to recognise speech in loud environments, or removing background noice from recordings is improving loads too.

    As is things like pattern/image analysis which appears very promising in medical analysis.

    All of these get branded as "AI". A layperson might not realise that they are completely different branches of technology, and then therefore reject useful applications of "AI" tech, because they've learned not to trust anything branded as AI, due to being let down by LLMs.

    I tried to dictate some documents recently without paying the big bucks for specialized software, and was surprised just how bad Google and Microsoft's speech recognition still is. Then I tried getting Word to transcribe some audio talks I had recorded, and that resulted in unreadable stuff with punctuation in all the wrong places. You could just about make out what it meant to say, so I tried asking various LLMs to tidy it up. That resulted in readable stuff that was largely made up and wrong, which also left out large chunks of the source material. In the end I just had to transcribe it all by hand.

    It surprised me that these AI-ish products are still unable to transcribe speech coherently or tidy up a messy document without changing the meaning.

  • This post did not contain any content.

    In one case, when an agent couldn't find the right person to consult on RocketChat (an open-source Slack alternative for internal communication), it decided "to create a shortcut solution by renaming another user to the name of the intended user.

    Ah ah, what the fuck.

    This is so stupid it's funny, but now imagine what kind of other "creative solutions" they might find.

  • This post did not contain any content.

    While I do hope this leads to a pushback on "I just put all our corporate secrets into chatgpt":

    In the before times, people got their answers from stack overflow... or fricking youtube. And those are also wrong VERY VERY VERY often. Which is one of the biggest problems. The illegally scraped training data is from humans and humans are stupid.

  • This post did not contain any content.

    I tried to order food at Taco Bell drive through the other day and they had an AI thing taking your order. I was so frustrated that I couldn't order something that was on the menu I just drove to the window instead. The guy that worked there was more interested in lecturing me on how I need to order. I just said forget it and drove off.

    If you want to use AI, I'm not going to use your services or products unless I'm forced to. Looking at you Xfinity.

  • 149 Stimmen
    15 Beiträge
    49 Aufrufe
    M
    Don't get them wrong, they don't do this for you, or even morals. It just affects other interests too much.
  • UK police are being told to hide their work with Palantir

    Technology technology
    5
    1
    276 Stimmen
    5 Beiträge
    22 Aufrufe
    M
    This is really fucking dark for multiple reasons
  • 83 Stimmen
    19 Beiträge
    65 Aufrufe
    E
    The cost of consuming media doesn’t match its worth. I never used ad blockers until they became invasive and disruptive.
  • 782 Stimmen
    231 Beiträge
    335 Aufrufe
    D
    Haha I'm kidding, it's good that you share your solution here.
  • 131 Stimmen
    6 Beiträge
    9 Aufrufe
    P
    This is a tough one for me: I'm opposed to femicide, but I only wish the absolute worst on influencers.
  • 151 Stimmen
    23 Beiträge
    44 Aufrufe
    D
    I played around the launch and didn't realize there were bots (outside of pve)... But I also assumed I was shooting a bunch of kids that barely understood the controls.
  • Catbox.moe got screwed 😿

    Technology technology
    40
    55 Stimmen
    40 Beiträge
    69 Aufrufe
    archrecord@lemm.eeA
    I'll gladly give you a reason. I'm actually happy to articulate my stance on this, considering how much I tend to care about digital rights. Services that host files should not be held responsible for what users upload, unless: The service explicitly caters to illegal content by definition or practice (i.e. the if the website is literally titled uploadyourcsamhere[.]com then it's safe to assume they deliberately want to host illegal content) The service has a very easy mechanism to remove illegal content, either when asked, or through simple monitoring systems, but chooses not to do so (catbox does this, and quite quickly too) Because holding services responsible creates a whole host of negative effects. Here's some examples: Someone starts a CDN and some users upload CSAM. The creator of the CDN goes to jail now. Nobody ever wants to create a CDN because of the legal risk, and thus the only providers of CDNs become shady, expensive, anonymously-run services with no compliance mechanisms. You run a site that hosts images, and someone decides they want to harm you. They upload CSAM, then report the site to law enforcement. You go to jail. Anybody in the future who wants to run an image sharing site must now self-censor to try and not upset any human being that could be willing to harm them via their site. A social media site is hosting the posts and content of users. In order to be compliant and not go to jail, they must engage in extremely strict filtering, otherwise even one mistake could land them in jail. All users of the site are prohibited from posting any NSFW or even suggestive content, (including newsworthy media, such as an image of bodies in a warzone) and any violation leads to an instant ban, because any of those things could lead to a chance of actually illegal content being attached. This isn't just my opinion either. Digital rights organizations such as the Electronic Frontier Foundation have talked at length about similar policies before. To quote them: "When social media platforms adopt heavy-handed moderation policies, the unintended consequences can be hard to predict. For example, Twitter’s policies on sexual material have resulted in posts on sexual health and condoms being taken down. YouTube’s bans on violent content have resulted in journalism on the Syrian war being pulled from the site. It can be tempting to attempt to “fix” certain attitudes and behaviors online by placing increased restrictions on users’ speech, but in practice, web platforms have had more success at silencing innocent people than at making online communities healthier." Now, to address the rest of your comment, since I don't just want to focus on the beginning: I think you have to actively moderate what is uploaded Catbox does, and as previously mentioned, often at a much higher rate than other services, and at a comparable rate to many services that have millions, if not billions of dollars in annual profits that could otherwise be spent on further moderation. there has to be swifter and stricter punishment for those that do upload things that are against TOS and/or illegal. The problem isn't necessarily the speed at which people can be reported and punished, but rather that the internet is fundamentally harder to track people on than real life. It's easy for cops to sit around at a spot they know someone will be physically distributing illegal content at in real life, but digitally, even if you can see the feed of all the information passing through the service, a VPN or Tor connection will anonymize your IP address in a manner that most police departments won't be able to track, and most three-letter agencies will simply have a relatively low success rate with. There's no good solution to this problem of identifying perpetrators, which is why platforms often focus on moderation over legal enforcement actions against users so frequently. It accomplishes the goal of preventing and removing the content without having to, for example, require every single user of the internet to scan an ID (and also magically prevent people from just stealing other people's access tokens and impersonating their ID) I do agree, however, that we should probably provide larger amounts of funding, training, and resources, to divisions who's sole goal is to go after online distribution of various illegal content, primarily that which harms children, because it's certainly still an issue of there being too many reports to go through, even if many of them will still lead to dead ends. I hope that explains why making file hosting services liable for user uploaded content probably isn't the best strategy. I hate to see people with good intentions support ideas that sound good in practice, but in the end just cause more untold harms, and I hope you can understand why I believe this to be the case.
  • 112 Stimmen
    34 Beiträge
    114 Aufrufe
    fredselfish@lemmy.worldF
    Nlow that was a great show. I always wanted in on that too. Back when Radio Shack still dealt in parts for remote control cars.