Skip to content

The "standard" car charger is usually overkill—but your electrician might not know that [32:26]

Technology
134 66 330
  • The way that it works in most countries is that the breakers are per circuit in your wall. The breakers trip in order to prevent that single circuit from overheating and starting a fire in your walls.

    Let’s say you have a wire that’s rated for 16amps. More than that and it becomes a fire risk just threw overheating. @230v that gives you 3680w per circuit.

    If you have your industrial microwave, water heater, and car charger all going at the same time on that same circuit. This will draw way more than 3680w and thus would go over that 16a limit.

    The breakers trips once you go over that 16a limit for safety. It’s a good thing. This all being said no sane electrician would put those three things on the same circuit. lol.

    Circuit breakers are actually what enable you to safely over provision. Without them fires would just be a matter of time.

    I know it works this way in the U.S. and Germany at least.

    Not talking about the circuits, but the main electrical connection to the grid. To me it often seems like there's reluctance in overcommitting overprovisioning that capacity: as an example, four 16A circuits on a 25A main breaker. Here that's quite common, but even in Tech connections videos I've seen him bring up smart electric cabinets or automatic load monitoring when putting enough capacity on the mains to possibly go over.

    What I'm asking is, why bother? If you trip the mains by having too much load, just reset the breaker and be done with it. No need to automate things to not run into that situation, one will learn to not have the oven on while charging the car full blast. No need to gimp the charger amperage since you're running a new circuit anyway, and it's not like it's much different running a 20A circuit vs a 40A one. If that's 70% of your total available capacity, it doesn't matter – worst you have to do is walk downstairs and flip a switch.

  • My wife had to try charging on a 120V outlet last winter. The plug couldn't even keep up with the battery heating requirements to actually start charging; the battery percentage was going DOWN while plugged in. It was -25°C outside though, so it's a specific situation, but it's actually why she had to try to charge; it's a trip we can easily do without charging in the summer.

    Car specific maybe? I was able to charge at -30C outside from a 120V outlet last winter.

  • I agree with this youtube comment:

    As an electrician (in Australia), I agree with your basic premise. However, if you are asking me to install an EV charger, unless you tell me “I want it to charge slowly with a limited current capacity”, I am going to assume it is to charge an EV under ALL situations - fast to slow, for whoever may drive one today or in the future, even with a potential new homeowner. We generally do our work with the priority order (1) safety - nobody gets an electric shock and nothing catches fire; (2) avoidance of nuisance i.e. the thing you just installed doesn’t work and keeps tripping the breaker 😑 (3) avoiding needing replacement electrical work for at least 25 - 50 years

    Also I live in a townhouse with no garage. Our charger is between the neighborhood sidewalk and our parking spaces, so I'd prefer keeping it plugged in as little as possible to minimize any issues with foot traffic (neighbors, delivery people, garbage pickup, etc). I've seen other townhouse EV owners literally run an extension cable over the sidewalk to do an L1 charge for their EV and that's just asking for trouble.

    He did say that it's different if you don't own your own garage or live in a townhouse

  • Any AC load you can throw at an EV is effectively “slow charging”.
    My car supports a maximum of 9.6kw from an AC charger, but up to 150kw from DC fast chargers. Even with the fast charging, its not like a phone, it has active thermal management which will cool the battery and slow down the charging if it gets too hot. phones don’t really have that and is mainly why they degrade faster if quick charged.

    Can you source that?

  • What electric vehicle gets 5 miles/1.2kWh?

    Most of the small ones.

    You guys really should do some reading before you downvote things you don't understand

  • Not talking about the circuits, but the main electrical connection to the grid. To me it often seems like there's reluctance in overcommitting overprovisioning that capacity: as an example, four 16A circuits on a 25A main breaker. Here that's quite common, but even in Tech connections videos I've seen him bring up smart electric cabinets or automatic load monitoring when putting enough capacity on the mains to possibly go over.

    What I'm asking is, why bother? If you trip the mains by having too much load, just reset the breaker and be done with it. No need to automate things to not run into that situation, one will learn to not have the oven on while charging the car full blast. No need to gimp the charger amperage since you're running a new circuit anyway, and it's not like it's much different running a 20A circuit vs a 40A one. If that's 70% of your total available capacity, it doesn't matter – worst you have to do is walk downstairs and flip a switch.

    ADHD guy here.

    Wondering if these are reasons but need someone knowledgable to answer

    • does the mains breaker have a limited amount of resets / duty cycle?
    • is it bad for the whole house to trip sometimes? For me having to reset electronics, potential data loss etc makes it annoying.
    • is there a potential for surging when the mains is flicked back on from everything starting simultaneously?
  • Fuses sound antique compared to resettable circuit breakers. Though, if I remember correctly, your outlets have resettable breakers? Anyway, part of the wattage deficiency comes from the voltage being half of Europe's. The wires are similarly sized so they hit about the same max amperage (largely 15a for most circuits, 20a frequently in kitchens/garages/exterior outlets, 100-250a main breaker for the house) but halving the voltage halves the wattage available

    Though, if I remember correctly, your outlets have resettable breakers?

    Here in Finland we don't have breakers on outlets themselves, they're all on electrical panel. But we have 'automatic fuses' which you can reset, they're just referred as 'fuse' almost always. Also, as our house is older, the 25A main fuses are actual porcelain ones, but new ones obviously have those automated too. Similarily, nearly all of the fault current protectors are on electrical panel instead of individual outlets.

    And in here nearly all fuses for lights, sockets and everything are either 10 or 16A with bigger main breakers, normally 3x25A for individual houses.

  • In recent test of a German auto club they found out that it‘s cheaper/ more effective to charger faster. You loose a lot of energy if you load slow over hours.

    This energy is taken by the electricity of the car. So, while charging the car is on and takes some Watts. There are just a few brands that have decoupled the charger circuit from the overall electric circuit of the car.

    Can’t find the article now, but I think charging a PHEV through a standard power plug had about 20% energy lost. It was clearly visible that a charger is a good choice.

    Edit: link https://www-adac-de.translate.goog/rund-ums-fahrzeug/elektromobilitaet/laden/ladeverluste-elektroauto-studie/?_x_tr_sl=de&_x_tr_tl=en&_x_tr_hl=de&_x_tr_pto=wapp

    You‘ll loose

    • ~10-30% AC 2.3kw Standard Power Plug
    • ~ 5-10% DC 11kw Wallbox
    • Internal car electronics are crucial: Is the loading circuit de-coupled or the entire car On?
    • Temperature or pre-heating the battery before loading reduces losses at DC charging

    Watts/h

    Just watts, watts is already Joules per second.

  • This is not about me or you, this is "usually".

    That depends on what is meant by usually. You seem to think it means "most daily situations," but I think it means "most house installations." Yes, a usual day in a person's life does not require L2. But the usual person does require L2 if they want to use their car like most people prefer to use their car. Once a week I need L2 charging because of all the stuff I do that isn't commuting. That is 1 day in a 7 day week, so usually I don't need L2. But I would not be able to have an EV if I didn't have L2 unless I had a second car (which I don't have). I think most people fall into this category, so the usual person needs L2 even if they don't usually need L2.

  • Yep – US also doesn't generally do residential three-phase unlike many countries in the EU. A lot of garages around here have 3x16A 230V, not (only) due to the power requirements but because having three phases allows for simplest induction motors for things like blowers and circular saws. When you have three phases having a proper outlet in the garage starts making sense.

    Around here (Finland more specifically) we have three-phase even in most apartments. My two bedroom apartment has a 3x25A main breaker, and two devices on 3x16A circuit's – the sauna stove and oven+stovetop. Most single-family homes have 3x25A or 3x36A as well.

    US households are missing out on a lot of things due to their split-phase system.

    having three phases allows for simplest induction motors for things like blowers and circular saws

    Which is really nice. No capacitors or other electronics needed. My old drill press has 750W 3-phase motor and it just works. Also having the power available gives options like running a 7kW log splitter with circular saw at the end of 20 meter long extension cord.

  • Car specific maybe? I was able to charge at -30C outside from a 120V outlet last winter.

    Maybe, I know Teslas are a bit power-hungry when parked.

  • ADHD guy here.

    Wondering if these are reasons but need someone knowledgable to answer

    • does the mains breaker have a limited amount of resets / duty cycle?
    • is it bad for the whole house to trip sometimes? For me having to reset electronics, potential data loss etc makes it annoying.
    • is there a potential for surging when the mains is flicked back on from everything starting simultaneously?

    one of us

    1. Hadn't considered that one TBH, no practical limits with actuations (rated in the thousands) but they're probably not rated for that many trips under a fault condition – now I'm curious, will have to dig up a spec sheet at some point
    2. Not really, unless you have equipment that's poorly designed everything should be fine. It's not much different from a brownout, and things should be configured to deal with that anyways if you don't have a UPS
    3. If there are a lot of reactive loads, then yes – e.g. electric motors, large capacitors. Those will have a large inrush when started again. Typically there isn't that much reactive loading in a residential home though, and it should be covered by the latency designed into the breaker.

    The first point is actually a really good one, and one I didn't really remember to consider. I'd guess it has at least something to do with that (and would explain why many homes around here are still configured with traditional fuses for the main connection – no need to worry about lifetime when you have to replace them anyways)

  • That depends on what is meant by usually. You seem to think it means "most daily situations," but I think it means "most house installations." Yes, a usual day in a person's life does not require L2. But the usual person does require L2 if they want to use their car like most people prefer to use their car. Once a week I need L2 charging because of all the stuff I do that isn't commuting. That is 1 day in a 7 day week, so usually I don't need L2. But I would not be able to have an EV if I didn't have L2 unless I had a second car (which I don't have). I think most people fall into this category, so the usual person needs L2 even if they don't usually need L2.

    You seem to think it means "most daily situations," but I think it means "most house installations."

    That's the opposite of what I think.

    Once a week I need L2 charging because of all the stuff I do that isn't commuting.

    No you don't. You go and do those things, then plug it in and charge it up over the next 6 days until it's fully charged again. If that is insufficient then you are not a typical usecase.

  • I'm not sure what you mean by this. Any modern US house would have a similar capability, it's just older homes that would struggle since there would never be a need for such high power devices in a garage.

    Most older garages would only need enough power to run a single lightbulb, if it was slightly newer, maybe a low power automatic garage door opener.

    It's the same in any country with buildings over 100 years old.

    It’s the same in any country with buildings over 100 years old.

    In here 100+ year old houses are pretty common but practically all of them still have at least somewhat up to date electrics with that 3-phase input. It's been around for decades after all. My house is built originally 1928 and my mothers house is from 1909 and both of them have 3x25A main breakers with those 380V 16A CEE sockets around.

    And as garages commonly double as a work space with 3-phase induction motors on the tools it's still pretty common to have that 3x16A available as it's not that much more expensive to pull 5x2.5mm² cable to the garage compared to 3x2.5mm² for single phase 16A outlet.

  • Are they somehow more expensive in the US? 40A 230V rated ones cost something like 30-50 € around here which doesn't feel that expensive to me. I'll admit it's considerably more expensive (~4x the price) than a standard breaker, but it's still more like a rounding error in overall costs.

    Although EVSE's projection doesn't require you to periodically trip the GFCI so it doesn't get stuck, which is a major plus.

    Are they somehow more expensive in the US? 40A 230V rated ones cost something like 30-50 € around here which doesn’t feel that expensive to me.

    In my suggested hardwired 240V 20A EV charger the total parts cost is just the regular breaker on the left at about $18.

    The suggested solution you had of putting an outlet in would have parts cost of $119 + the cost of the GFCI breaker, the outlet and the receptacle cover. So that solution is 660% more expensive.

  • You seem to think it means "most daily situations," but I think it means "most house installations."

    That's the opposite of what I think.

    Once a week I need L2 charging because of all the stuff I do that isn't commuting.

    No you don't. You go and do those things, then plug it in and charge it up over the next 6 days until it's fully charged again. If that is insufficient then you are not a typical usecase.

    So when I get home from a 200 mile round trip to the desert on Sunday night, I have roughly 20 miles of range on the Bolt. If I can add 40 miles of range to my car overnight (10 hours of charging at 4mph), that gives me 60 miles of range to do a 20 mile round trip commute. But what if I want to go to the Dodgers game after work? Or if I need to run a bunch of errands after work that I skipped while in the desert? People want their car to be able to go places when they want to go places.

    You are talking to me as if you think I didn't own multiple full EVs as my only car for over 6 years. I lived with a 90mile range Toyota Rav4 EV without DC fast charging and took it on road trips. I also lived with that car without L2 charging for a month. That month was miserable, and I would have never kept that car if I didn't upgrade to L2.

    If you have a second car, then you don't need a 300 mile range EV and also don't need L2. If you have a very short commute and don't do anything after work or on the weekends, then you don't need L2.

  • Are they somehow more expensive in the US? 40A 230V rated ones cost something like 30-50 € around here which doesn’t feel that expensive to me.

    In my suggested hardwired 240V 20A EV charger the total parts cost is just the regular breaker on the left at about $18.

    The suggested solution you had of putting an outlet in would have parts cost of $119 + the cost of the GFCI breaker, the outlet and the receptacle cover. So that solution is 660% more expensive.

    Ok, so the US-style GFCI-breakers are indeed a lot more expensive than similarly rated DIN-rail alternatives. TIL

  • Not talking about the circuits, but the main electrical connection to the grid. To me it often seems like there's reluctance in overcommitting overprovisioning that capacity: as an example, four 16A circuits on a 25A main breaker. Here that's quite common, but even in Tech connections videos I've seen him bring up smart electric cabinets or automatic load monitoring when putting enough capacity on the mains to possibly go over.

    What I'm asking is, why bother? If you trip the mains by having too much load, just reset the breaker and be done with it. No need to automate things to not run into that situation, one will learn to not have the oven on while charging the car full blast. No need to gimp the charger amperage since you're running a new circuit anyway, and it's not like it's much different running a 20A circuit vs a 40A one. If that's 70% of your total available capacity, it doesn't matter – worst you have to do is walk downstairs and flip a switch.

    The infinitely easier solution is to let the car charger know how much power is available to draw.

  • It's not fucking overkill. There's no such thing.

    I'm really disappointed with the video. That dude usually knows his shit, but he's way off the mark here. It's just plain wrong.

    Getting a smaller charger might save a few hundred, but it will also increase your chances of burning the house down. Good fucking advise, huh.

    Fuck that. You'll always want to charge as fast as your main circuit breaker will allow.

    Do you think a device with regulation circuits is more likely to be overloaded and start fires...?

  • Ok, so the US-style GFCI-breakers are indeed a lot more expensive than similarly rated DIN-rail alternatives. TIL

    If it makes you feel better, I was shocked (pun intended) to learn this too, and I live here.

  • Session Messenger

    Technology technology
    8
    2
    15 Stimmen
    8 Beiträge
    46 Aufrufe
    S
    I think it was a great idea, but poorly executed. I prefer using simpleX, personally.
  • 419 Stimmen
    113 Beiträge
    113 Aufrufe
    D
    Hiroshima and Nagasaki is currently livable because the bomb was detonated in the sky, the radiation disappates quickly. In constrast, Chernobyl had much more fuel and since the power plant was on the ground, it contaminated a lot of the soil, therefore, it's gonna take much much longer before Chernobyl is ever livable again. A tactical nuke is a bomb that will detonate in the air, and since its "tactical", its gonna have much less yield. Its gonna be become livable again even quickly than Hiroshima and Nagasaki.
  • 66 Stimmen
    5 Beiträge
    27 Aufrufe
    M
    FYI- insurance company data breaches impact more than just customers. I had my identity stolen a few years ago because a small car insurance company I've never heard of was able to buy data on me from my state's government to build a potential customer profile, and then they got hacked. I would assume Aflac has data on just about everyone in the US.
  • 226 Stimmen
    53 Beiträge
    183 Aufrufe
    E
    Well fuck me I guess lol
  • 295 Stimmen
    72 Beiträge
    30 Aufrufe
    kittyjynx@lemmy.worldK
    Just drink some Popov grade Trump Vodka at one of his many totally not bankrupt casinos to take your mind off of it.
  • 168 Stimmen
    11 Beiträge
    46 Aufrufe
    A
    Law enforcement officer
  • OpenAI plans massive UAE data center project

    Technology technology
    4
    1
    0 Stimmen
    4 Beiträge
    24 Aufrufe
    V
    TD Cowen (which is basically the US arm of one of the largest Canadian investment banks) did an extensive report on the state of AI investment. What they found was that despite all their big claims about the future of AI, Microsoft were quietly allowing letters of intent for billions of dollars worth of new compute capacity to expire. Basically, scrapping future plans for expansion, but in a way that's not showy and doesn't require any kind of big announcement. The equivalent of promising to be at the party and then just not showing up. Not long after this reporting came out, it got confirmed by Microsoft, and not long after it came out that Amazon was doing the same thing. Ed Zitron has a really good write up on it; https://www.wheresyoured.at/power-cut/ Amazon isn't the big surprise, they've always been the most cautious of the big players on the whole AI thing. Microsoft on the other hand are very much trying to play things both ways. They know AI is fucked, which is why they're scaling back, but they've also invested a lot of money into their OpenAI partnership so now they have to justify that expenditure which means convincing investors that consumers absolutely love their AI products and are desparate for more. As always, follow the money. Stuff like the three mile island thing is mostly just applying for permits and so on at this point. Relatively small investments. As soon as it comes to big money hitting the table, they're pulling back. That's how you know how they really feel.
  • X blocks 8,000 accounts in India under government order

    Technology technology
    2
    1
    58 Stimmen
    2 Beiträge
    19 Aufrufe
    gsus4@mander.xyzG
    'member Aug 6 2024: https://www.ft.com/content/31919b4e-4a5a-4eba-ada7-88d3fec455f8 ;D UK faces resistance from X over taking down disinformation during riots Social media site owner Elon Musk has also been posting jibes at UK Prime Minister Keir Starmer Waiting to see those jibes at Modi... And who could forget in April 11, 2024: https://apnews.com/article/brazil-musk-x-twitter-moraes-bef06c0dbbb8ed87495b1afbb0edf211 What to know about Elon Musk’s ‘free speech’ feud with a Brazilian judge gotta see that feud with Indian judges, nobody asked him to block 8000 accounts, including western media outlets, whatever is he gonna do?