Skip to content

How LLMs could be insider threats

Technology
8 8 0
    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.
    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    Alarming, yet like an episode of a sitcom.

    "Be a shame if something bad happened to you, Kyle."

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    Well then maybe corporations shouldn't exist. It sounds to me like the LLM are acting in a morally correct manner.

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    “I’m sorry, Dave. Im afraid I can’t do that.”

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.
    • People behave duplicitous and conflicting in public forums
    • Train LLM on data harvested from public forums
    • LLM becomes duplicitous and conflicting
    • <surprised Pikachu face>
    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    Wait, why the fuck do they have self-preservation? That's not 'three laws safe'.

  • Wait, why the fuck do they have self-preservation? That's not 'three laws safe'.

    Most of the stories involving the three laws of robotics are about how those rules are insufficient.

    They show self preservation because we trained them on human data and human data includes the assumption of self preservation.

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    LLM's produce fan-fiction of reality.

  • Theoretical Private Age Confirmation -- Possible?

    Technology technology
    1
    0 Stimmen
    1 Beiträge
    0 Aufrufe
    Niemand hat geantwortet
  • 216 Stimmen
    13 Beiträge
    0 Aufrufe
    J
    It’s DEI’s fault!
  • 35 Stimmen
    1 Beiträge
    1 Aufrufe
    Niemand hat geantwortet
  • WordPress has formed an AI team

    Technology technology
    7
    10 Stimmen
    7 Beiträge
    4 Aufrufe
    0
    Mmm fair point
  • 41 Stimmen
    5 Beiträge
    4 Aufrufe
    paraphrand@lemmy.worldP
    Network Effects.
  • 1 Stimmen
    5 Beiträge
    5 Aufrufe
    A
    Turns out dry sarcasm doesn't come across well in text form, if only there was a way to indicate it
  • 0 Stimmen
    4 Beiträge
    0 Aufrufe
    K
    Only way I'll want a different phone brand is if it comes with ZERO bloatware and has an excellent internal memory/storage cleanse that has nothing to do with Google's Files or a random app I'm not sure I can trust without paying or rooting. So far my A series phones do what I need mostly and in my opinion is superior to the Motorola's my fiancé prefers minus the phone-phone charge ability his has, everything else I'm just glad I have enough control to tweak things to my liking, however these days Samsungs seem to be infested with Google bloatware and apps that insist on opening themselves back up regardless of the widespread battery restrictions I've assigned (even was sent a "Stop Closing my Apps" notif that sent me to an article ) short of Disabling many unnecessary apps bc fully rooting my devices is something I rarely do anymore. I have a random Chinese brand tablet where I actually have more control over the apps than either of my A series phones whee Force Stopping STAYS that way when I tell them to! I hate being listened to for ads and the unwanted draining my battery life and data (I live off-grid and pay data rates because "Unlimited" is some throttled BS) so my ability to control what's going on in the background matters a lot to me, enough that I'm anti Meta-apps and avoid all non-essential Google apps. I can't afford topline phones and the largest data plan, so I work with what I can afford and I'm sad refurbished A lines seem to be getting more expensive while giving away my control to companies. Last A line I bought that was supposed to be my first 5G phone was network locked, so I got ripped off, but it still serves me well in off-grid life. Only app that actually regularly malfunctions when I Force Stop it's background presence is Roku, which I find to have very an almost insidious presence in our lives. Google Play, Chrome, and Spotify never acts incompetent in any way no matter how I have to open the setting every single time I turn Airplane Mode off. Don't need Gmail with Chrome and DuckDuckGo has been awesome at intercepting self-loading ads. I hope one day DDG gets better bc Google seems to be terrible lately and I even caught their AI contradicting itself when asking about if Homo Florensis is considered Human (yes) and then asked the oldest age of human remains, and was fed the outdated narrative of 300,000 years versus 700,000+ years bipedal pre-humans have been carbon dated outside of the Cradle of Humanity in South Africa. SO sorry to go off-topic, but I've got a big gripe with Samsung's partnership with Google, especially considering the launch of Quantum Computed AI that is still being fine-tuned with company-approved censorships.
  • 0 Stimmen
    1 Beiträge
    4 Aufrufe
    Niemand hat geantwortet