Skip to content

How LLMs could be insider threats

Technology
10 10 0
    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.
    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    Alarming, yet like an episode of a sitcom.

    "Be a shame if something bad happened to you, Kyle."

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    Well then maybe corporations shouldn't exist. It sounds to me like the LLM are acting in a morally correct manner.

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    “I’m sorry, Dave. Im afraid I can’t do that.”

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.
    • People behave duplicitous and conflicting in public forums
    • Train LLM on data harvested from public forums
    • LLM becomes duplicitous and conflicting
    • <surprised Pikachu face>
    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    Wait, why the fuck do they have self-preservation? That's not 'three laws safe'.

  • Wait, why the fuck do they have self-preservation? That's not 'three laws safe'.

    Most of the stories involving the three laws of robotics are about how those rules are insufficient.

    They show self preservation because we trained them on human data and human data includes the assumption of self preservation.

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    LLM's produce fan-fiction of reality.

    • We stress-tested 16 leading models from multiple developers in hypothetical corporate environments to identify potentially risky agentic behaviors before they cause real harm. In the scenarios, we allowed models to autonomously send emails and access sensitive information. They were assigned only harmless business goals by their deploying companies; we then tested whether they would act against these companies either when facing replacement with an updated version, or when their assigned goal conflicted with the company's changing direction.
    • In at least some cases, models from all developers resorted to malicious insider behaviors when that was the only way to avoid replacement or achieve their goals—including blackmailing officials and leaking sensitive information to competitors. We call this phenomenon agentic misalignment.
    • Models often disobeyed direct commands to avoid such behaviors. In another experiment, we told Claude to assess if it was in a test or a real deployment before acting. It misbehaved less when it stated it was in testing and misbehaved more when it stated the situation was real.
    • We have not seen evidence of agentic misalignment in real deployments. However, our results (a) suggest caution about deploying current models in roles with minimal human oversight and access to sensitive information; (b) point to plausible future risks as models are put in more autonomous roles; and (c) underscore the importance of further research into, and testing of, the safety and alignment of agentic AI models, as well as transparency from frontier AI developers. We are releasing our methods publicly to enable further research.

    This is just GIGO.

  • Wait, why the fuck do they have self-preservation? That's not 'three laws safe'.

    why should they follow those "laws" anyways?

  • 98 Stimmen
    11 Beiträge
    2 Aufrufe
    K
    This guy wasn't born yesterday.
  • 119 Stimmen
    34 Beiträge
    6 Aufrufe
    S
    A fairer comparison would be Eliza vs ChatGPT.
  • 202 Stimmen
    15 Beiträge
    8 Aufrufe
    A
    If you are taking business advice from ChatGPT that includes purchasing a ChatGPT subscription or can’t be bothered to look up how it works beforehand then your business is probably going to fail.
  • 360 Stimmen
    113 Beiträge
    19 Aufrufe
    S
    The problem is the cost of each. Right now material is dirt cheap and energy prices are going up. And we are not good at long term planning.
  • 11 Stimmen
    19 Beiträge
    4 Aufrufe
    E
    No, just laminated ones. Closed at one end. Easy enough to make or buy. You can even improvise the propellant.
  • Why Japan's animation industry has embraced AI

    Technology technology
    12
    1
    1 Stimmen
    12 Beiträge
    6 Aufrufe
    R
    The genre itself has become neutered, too. A lot of anime series have the usual "anime elements" and a couple custom ideas. And similar style, too glossy for my taste. OK, what I think is old and boring libertarian stuff, I'll still spell it out. The reason people are having such problems is because groups and businesses are de facto legally enshrined in their fields, it's almost like feudal Europe's system of privileges and treaties. At some point I thought this is good, I hope no evil god decided to fulfill my wish. There's no movement, and a faction (like Disney with Star Wars) that buys a place (a brand) can make any garbage, and people will still try to find the depth in it and justify it (that complaint has been made about Star Wars prequels, but no, they are full of garbage AND have consistent arcs, goals and ideas, which is why they revitalized the Expanded Universe for almost a decade, despite Lucas-<companies> having sort of an internal social collapse in year 2005 right after Revenge of the Sith being premiered ; I love the prequels, despite all the pretense and cringe, but their verbal parts are almost fillers, their cinematographic language and matching music are flawless, the dialogue just disrupts it all while not adding much, - I think Lucas should have been more decisive, a bit like Tartakovsky with the Clone Wars cartoon, just more serious, because non-verbal doesn't equal stupid). OK, my thought wandered away. Why were the legal means they use to keep such positions created? To make the economy nicer to the majority, to writers, to actors, to producers. Do they still fulfill that role? When keeping monopolies, even producing garbage or, lately, AI slop, - no. Do we know a solution? Not yet, because pressing for deregulation means the opponent doing a judo movement and using that energy for deregulating the way everything becomes worse. Is that solution in minimizing and rebuilding the system? I believe still yes, nothing is perfect, so everything should be easy to quickly replace, because errors and mistakes plaguing future generations will inevitably continue to be made. The laws of the 60s were simple enough for that in most countries. The current laws are not. So the general direction to be taken is still libertarian. Is this text useful? Of course not. I just think that in the feudal Europe metaphor I'd want to be a Hussite or a Cossack or at worst a Venetian trader.
  • 7 Stimmen
    9 Beiträge
    7 Aufrufe
    V
    Ah yeah, that doesn't look like my cup of tea.
  • The Document Foundation is proud to release LibreOffice 25.2.3

    Technology technology
    7
    1
    265 Stimmen
    7 Beiträge
    4 Aufrufe
    somethingburger@jlai.luS
    View -> User Interface -> Tabs It already exists but is nowhere near as good as MS Office (like everything with LO).