Skip to content

AI agents wrong ~70% of time: Carnegie Mellon study

Technology
269 106 61
  • Literally the opposite experience when I helped material scientists with their R&D. Breaking in production would mean people who get paid 2x more than me are suddenly unable to do their job. But then again, our requirements made sense because we would literally look at a manual process to automate with the engineers. What you describe sounds like hell to me. There are greener pastures.

    Yeah, sometimes the requirements write themselves and in those cases successful execution is "on the critical path."

    Unfortunately, our requirements are filtered from our paying customers through an ever rotating cast of Marketing and Sales characters who, nominally, are our direct customers so we make product for them - but they rarely have any clear or consistent vision of what they want, but they know they want new stuff - that's for sure.

  • Yeah, sometimes the requirements write themselves and in those cases successful execution is "on the critical path."

    Unfortunately, our requirements are filtered from our paying customers through an ever rotating cast of Marketing and Sales characters who, nominally, are our direct customers so we make product for them - but they rarely have any clear or consistent vision of what they want, but they know they want new stuff - that's for sure.

    When requirements are "Whatever" then by all means use the "Whatever" machine: https://eev.ee/blog/2025/07/03/the-rise-of-whatever/

    And then look for a better gig because such an environment is going to be toxic to your skill set. The more exacting the shop, the better they pay.

  • I'd just like to point out that, from the perspective of somebody watching AI develop for the past 10 years, completing 30% of automated tasks successfully is pretty good! Ten years ago they could not do this at all. Overlooking all the other issues with AI, I think we are all irritated with the AI hype people for saying things like they can be right 100% of the time -- Amazon's new CEO actually said they would be able to achieve 100% accuracy this year, lmao. But being able to do 30% of tasks successfully is already useful.

    I think this comment made me finally understand the AI hate circlejerk on lemmy. If you have no clue how LLMs work and you have no idea where "AI" is coming from, it just looks like another crappy product that was thrown on the market half-ready. I guess you can only appreciate the absolutely incredible development of LLMs (and AI in general) that happened during the last ~5 years if you can actually see it in the first place.

  • I have been using AI to write (little, near trivial) programs. It's blindingly obvious that it could be feeding this code to a compiler and catching its mistakes before giving them to me, but it doesn't... yet.

    Agents do that loop pretty well now, and Claude now uses your IDE's LSP to help it code and catch errors in flow. I think Windsurf or Cursor also do that also.

    The tooling has improved a ton in the last 3 months.

  • When requirements are "Whatever" then by all means use the "Whatever" machine: https://eev.ee/blog/2025/07/03/the-rise-of-whatever/

    And then look for a better gig because such an environment is going to be toxic to your skill set. The more exacting the shop, the better they pay.

    The more exacting the shop, the better they pay.

    That hasn't been my experience, but it sounds like good advice anyway. My experience has been that the more profitable the parent company, the better the job security and the better the pay too. Once "in," tune in to the culture and align with the people at your level and above who seem like they'll be sticking around long term. If the company isn't financially secure, all bets are off and you should be seeking, and taking, a better offer when you can find one.

    I knocked around startups for 10/22 years (depending on how you characterize that one 12 year gig that ended with everybody laid off...) The pay was good enough, but job security just wasn't on the menu. Finally, one got bought by a big fish and I've been in the belly of the beast for 11 years now.

  • I think it's lemmy users. I see a lot more LLM skepticism here than in the news feeds.

    In my experience, LLMs are like the laziest, shittiest know-nothing bozo forced to complete a task with zero attention to detail and zero care about whether it's crap, just doing enough to sound convincing.

    😆 I can't believe how absolutely silly a lot of you sound with this.

    LLM is a tool. It's output is dependent on the input. If that's the quality of answer you're getting, then it's a user error. I guarantee you that LLM answers for many problems are definitely adequate.

    It's like if a carpenter said the cabinets turned out shit because his hammer only produces crap.

    Also another person commented that seen the pattern you also see means we're psychotic.

    All I'm trying to suggest is Lemmy is getting seriously manipulated by the media attitude towards LLMs and these comments I feel really highlight that.

  • LLMs are like a multitool, they can do lots of easy things mostly fine as long as it is not complicated and doesn't need to be exactly right. But they are being promoted as a whole toolkit as if they are able to be used to do the same work as effectively as a hammer, power drill, table saw, vise, and wrench.

    It is truly terrible marketing. It's been obvious to me for years the value is in giving it to people and enabling them to do more with less, not outright replacing humans, especially not expert humans.

    I use AI/LLMs pretty much every day now. I write MCP servers and automate things with it and it's mind blowing how productive it makes me.

    Just today I used these tools in a highly supervised way to complete a task that would have been a full day of tedius work, all done in an hour. That is fucking fantastic, it's means I get to spend that time on more important things.

    It's like giving an accountant excel. Excel isn't replacing them, but it's taking care of specific tasks so they can focus on better things.

    On the reliability and accuracy front there is still a lot to be desired, sure. But for supervised chats where it's calling my tools it's pretty damn good.

  • than reading an actual intro on an unfamiliar topic

    The LLM helps me know what to look for in order to find that unfamiliar topic.

    For example, I was tasked to support a file format that's common in a very niche field and never used elsewhere, and unfortunately shares an extension with a very common file format, so searching for useful data was nearly impossible. So I asked the LLM for details about the format and applications of it, provided what I knew, and it spat out a bunch of keywords that I then used to look up more accurate information about that file format. I only trusted the LLM output to the extent of finding related, industry-specific terms to search up better information.

    Likewise, when looking for libraries for a coding project, none really stood out, so I asked the LLM to compare the popular libraries for solving a given problem. The LLM spat out a bunch of details that were easy to verify (and some were inaccurate), which helped me narrow what I looked for in that library, and the end result was that my search was done in like 30 min (about 5 min dealing w/ LLM, and 25 min checking the projects and reading a couple blog posts comparing some of the libraries the LLM referred to).

    I think this use case is a fantastic use of LLMs, since they're really good at generating text related to a query.

    It’s going to say something plausible, and you tautologically are not in a position to verify it.

    I absolutely am though. If I am merely having trouble recalling a specific fact, asking the LLM to generate it is pretty reasonable. There are a ton of cases where I'll know the right answer when I see it, like it's on the tip of my tongue but I'm having trouble materializing it. The LLM might spit out two wrong answers along w/ the right one, but it's easy to recognize which is the right one.

    I'm not going to ask it facts that I know I don't know (e.g. some historical figure's birth or death date), that's just asking for trouble. But I'll ask it facts that I know that I know, I'm just having trouble recalling.

    The right use of LLMs, IMO, is to generate text related to a topic to help facilitate research. It's not great at doing the research though, but it is good at helping to formulate better search terms or generate some text to start from for whatever task.

    general search on the web?

    I agree, it's not great for general search. It's great for turning a nebulous question into better search terms.

    It's a bit frustrating that finding these tools useful is so often met with it can't be useful for that, when it definitely is.

    More than any other tool in history LLMs have a huge dose of luck involved and a learning curve on how to ask the right things the right way. And those method change and differ between models too.

  • than reading an actual intro on an unfamiliar topic

    The LLM helps me know what to look for in order to find that unfamiliar topic.

    For example, I was tasked to support a file format that's common in a very niche field and never used elsewhere, and unfortunately shares an extension with a very common file format, so searching for useful data was nearly impossible. So I asked the LLM for details about the format and applications of it, provided what I knew, and it spat out a bunch of keywords that I then used to look up more accurate information about that file format. I only trusted the LLM output to the extent of finding related, industry-specific terms to search up better information.

    Likewise, when looking for libraries for a coding project, none really stood out, so I asked the LLM to compare the popular libraries for solving a given problem. The LLM spat out a bunch of details that were easy to verify (and some were inaccurate), which helped me narrow what I looked for in that library, and the end result was that my search was done in like 30 min (about 5 min dealing w/ LLM, and 25 min checking the projects and reading a couple blog posts comparing some of the libraries the LLM referred to).

    I think this use case is a fantastic use of LLMs, since they're really good at generating text related to a query.

    It’s going to say something plausible, and you tautologically are not in a position to verify it.

    I absolutely am though. If I am merely having trouble recalling a specific fact, asking the LLM to generate it is pretty reasonable. There are a ton of cases where I'll know the right answer when I see it, like it's on the tip of my tongue but I'm having trouble materializing it. The LLM might spit out two wrong answers along w/ the right one, but it's easy to recognize which is the right one.

    I'm not going to ask it facts that I know I don't know (e.g. some historical figure's birth or death date), that's just asking for trouble. But I'll ask it facts that I know that I know, I'm just having trouble recalling.

    The right use of LLMs, IMO, is to generate text related to a topic to help facilitate research. It's not great at doing the research though, but it is good at helping to formulate better search terms or generate some text to start from for whatever task.

    general search on the web?

    I agree, it's not great for general search. It's great for turning a nebulous question into better search terms.

    One word of caution with AI searxh is that it's weirdly vulnerable to SEO.

    If you search for "best X for Y" and a company has an article on their blog about how their product solves a problem the AI can definitely summarize that into a "users don't like that foolib because of ...". At least that's been my experience looking for software vendors.

  • I tried to dictate some documents recently without paying the big bucks for specialized software, and was surprised just how bad Google and Microsoft's speech recognition still is. Then I tried getting Word to transcribe some audio talks I had recorded, and that resulted in unreadable stuff with punctuation in all the wrong places. You could just about make out what it meant to say, so I tried asking various LLMs to tidy it up. That resulted in readable stuff that was largely made up and wrong, which also left out large chunks of the source material. In the end I just had to transcribe it all by hand.

    It surprised me that these AI-ish products are still unable to transcribe speech coherently or tidy up a messy document without changing the meaning.

    I don't know basic solutions that are super good, but whisper sbd the whisper derivatives I hear are decent for dictation these days.

    I have no idea how to run then though.

  • It's a bit frustrating that finding these tools useful is so often met with it can't be useful for that, when it definitely is.

    More than any other tool in history LLMs have a huge dose of luck involved and a learning curve on how to ask the right things the right way. And those method change and differ between models too.

    And that's the same w/ traditional search engines, the difference is that we're used to search engines and LLMs are new. Learn how to use the tool and decide for yourself when it's useful.

  • One word of caution with AI searxh is that it's weirdly vulnerable to SEO.

    If you search for "best X for Y" and a company has an article on their blog about how their product solves a problem the AI can definitely summarize that into a "users don't like that foolib because of ...". At least that's been my experience looking for software vendors.

    Oh sure, caution is always warranted w/ LLMs. But when it works, it can save a ton of time.

  • Were you prone to this weird leaps of logic before your brain was fried by talking to LLMs, or did you start being a fan of talking to LLMs because your ability to logic was...well...that?

    You see, I wanted to be petty and do another dismissive reply, but instead I fed our convo to copilot and asked it to explain, here you go, as you can see I have previously used it for coding tasks, so I didn't feed it any extra info, so there you go, even copilot can understand the huge "leap" I made in logic. goddamn the sweet taste of irony.

    Copilot reply:

    Certainly! Here’s an explanation Person B could consider:

    The implied logic in Person A’s argument is that if you distrust code written by Copilot (or any AI tool) simply because it wasn’t written by you, then by the same reasoning, you should also distrust code written by junior developers, since that code also isn’t written by you and may have mistakes or lack experience.

    However, in real-world software development, teams regularly review, test, and maintain code written by others—including juniors, seniors, and even AI tools. The quality of code depends on review processes, testing, and collaboration, not just on who wrote it. Dismissing Copilot-generated code outright is similar to dismissing the contributions of junior developers, which isn’t practical or productive in a collaborative environment.

  • 😆 I can't believe how absolutely silly a lot of you sound with this.

    LLM is a tool. It's output is dependent on the input. If that's the quality of answer you're getting, then it's a user error. I guarantee you that LLM answers for many problems are definitely adequate.

    It's like if a carpenter said the cabinets turned out shit because his hammer only produces crap.

    Also another person commented that seen the pattern you also see means we're psychotic.

    All I'm trying to suggest is Lemmy is getting seriously manipulated by the media attitude towards LLMs and these comments I feel really highlight that.

    If that’s the quality of answer you’re getting, then it’s a user error

    No, I know the data I gave it and I know how hard I tried to get it to use it truthfully.

    You have an irrational and wildly inaccurate belief in the infallibility of LLMs.

    You're also denying the evidence of my own experience. What on earth made you think I would believe you over what I saw with my own eyes?

  • and? we can understand 256 where AI can't, that's the point.

    The 256 thing was written by a person. AI doesn't have exclusive rights to being dumb, plenty of dumb people around.

  • So the chances of it being right ten times in a row are 2%.

  • For me as a software developer the accuracy is more in the 95%+ range.

    On one hand the built in copilot chat widget in Intellij basically replaces a lot my google queries.

    On the other hand it is rather fucking good at executing some rewrites that is a fucking chore to do manually, but can easily be done by copilot.

    Imagine you have a script that initializes your DB with some test data. You have an Insert into statement with lots of columns and rows so

    Inser into (column1,....,column n)
    Values row1,
    Row 2
    Row n

    Addig a new column with test data for each row is a PITA, but copilot handles it without issue.

    Similarly when writing unit tests you do a lot of edge case testing which is a bunch of almost same looking tests with maybe one variable changing, at most you write one of those tests, then copilot will auto generate the rest after you name the next unit test, pretty good at guessing what you want to do in that test, at least with my naming scheme.

    So yeah, it's way overrated for many-many things, but for programming it's a pretty awesome productivity tool.

    For your database test data, I usually write a helper that defaults those columns to base values, so I can pass in lists of dictionaries, then the test cases are easier to modify and read.

    It's also nice because you're only including the fields you use in your unit test, the rest are default valid you don't need to care about.

  • Oh sure, caution is always warranted w/ LLMs. But when it works, it can save a ton of time.

    Definitely, I'm just trying to share a foot gun I've accidentally triggered myself!

  • So the chances of it being right ten times in a row are 2%.

    No the chances of being wrong 10x in a row are 2%. So the chances of being right at least once are 98%.

  • Jan Refiner is up there for me.

    I just arrived at act 2, and he wasn't one of the four I've unlocked...

  • 253 Stimmen
    40 Beiträge
    22 Aufrufe
    dojan@pawb.socialD
    It is a direct result of structural racism, as it's a product of the treatment of white men as being the default. You see it all the time in medicine. There are conditions that disproportionately affect black people that we don't know enough about because time and money hasn't been spent studying it. Women face the same problem. Lots of conditions apply differently in women. An example of this being why women historically have been underrepresented in e.g. autism diagnoses. It presents differently so for a while the assumption was made that women just can't be autistic. I don't think necessarily that people who perpetuate this problem are doing so out of malice, they probably don't think of women/black people as lesser (hell, many probably are women and/or black), but it doesn't change the fact that structural problems requires awareness and conscious effort to correct.
  • AI search finds publishers starved of referral traffic

    Technology technology
    38
    1
    117 Stimmen
    38 Beiträge
    139 Aufrufe
    alk@sh.itjust.worksA
    They really do! It's nice to read something that's clearly hand crafted and high quality, especially the big news roundups that you do, as opposed to the usual SEO slop most news sites have. It's a treat every time a new one comes out.
  • Signal – an ethical replacement for WhatsApp

    Technology technology
    235
    1
    1k Stimmen
    235 Beiträge
    930 Aufrufe
    V
    What I said is that smart people can be convinced to move to another platform. Most of my friends are not technically inclined, but it was easy to make them use it, at least to chat with me. What you did is change "smart people" with "people who already want to move", which is not the same. You then said it's not something you can choose (as you cannot choose to be rich). But I answered that you can actually choose your friends. Never did I say people who are not interested in niche technologies are not smart. My statement can be rephrased in an equivalent statement "people who cannot be convinced to change are not smart", and I stand to it.
  • 15 Stimmen
    4 Beiträge
    22 Aufrufe
    P
    WTF I looked for something like this for a while and this never popped up. Awesome.
  • XMPP vs everything else

    Technology technology
    10
    1
    43 Stimmen
    10 Beiträge
    40 Aufrufe
    M
    Conversely, I have seen this opinion expressed a few times. I can’t judge the accuracy but there seem to be more than a few people sharing it.
  • 347 Stimmen
    91 Beiträge
    42 Aufrufe
    E
    It kinda seems like you don’t understand the actual technology.
  • 1k Stimmen
    95 Beiträge
    16 Aufrufe
    G
    Obviously the law must be simple enough to follow so that for Jim’s furniture shop is not a problem nor a too high cost to respect it, but it must be clear that if you break it you can cease to exist as company. I think this may be the root of our disagreement, I do not believe that there is any law making body today that is capable of an elegantly simple law. I could be too naive, but I think it is possible. We also definitely have a difference on opinion when it comes to the severity of the infraction, in my mind, while privacy is important, it should not have the same level of punishments associated with it when compared to something on the level of poisoning water ways; I think that a privacy law should hurt but be able to be learned from while in the poison case it should result in the bankruptcy of a company. The severity is directly proportional to the number of people affected. If you violate the privacy of 200 million people is the same that you poison the water of 10 people. And while with the poisoning scenario it could be better to jail the responsible people (for a very, very long time) and let the company survive to clean the water, once your privacy is violated there is no way back, a company could not fix it. The issue we find ourselves with today is that the aggregate of all privacy breaches makes it harmful to the people, but with a sizeable enough fine, I find it hard to believe that there would be major or lasting damage. So how much money your privacy it's worth ? 6 For this reason I don’t think it is wise to write laws that will bankrupt a company off of one infraction which was not directly or indirectly harmful to the physical well being of the people: and I am using indirectly a little bit more strict than I would like to since as I said before, the aggregate of all the information is harmful. The point is that the goal is not to bankrupt companies but to have them behave right. The penalty associated to every law IS the tool that make you respect the law. And it must be so high that you don't want to break the law. I would have to look into the laws in question, but on a surface level I think that any company should be subjected to the same baseline privacy laws, so if there isn’t anything screwy within the law that apple, Google, and Facebook are ignoring, I think it should apply to them. Trust me on this one, direct experience payment processors have a lot more rules to follow to be able to work. I do not want jail time for the CEO by default but he need to know that he will pay personally if the company break the law, it is the only way to make him run the company being sure that it follow the laws. For some reason I don’t have my usual cynicism when it comes to this issue. I think that the magnitude of loses that vested interests have in these companies would make it so that companies would police themselves for fear of losing profits. That being said I wouldn’t be opposed to some form of personal accountability on corporate leadership, but I fear that they will just end up finding a way to create a scapegoat everytime. It is not cynicism. I simply think that a huge fine to a single person (the CEO for example) is useless since it too easy to avoid and if it really huge realistically it would be never paid anyway so nothing usefull since the net worth of this kind of people is only on the paper. So if you slap a 100 billion file to Musk he will never pay because he has not the money to pay even if technically he is worth way more than that. Jail time instead is something that even Musk can experience. In general I like laws that are as objective as possible, I think that a privacy law should be written so that it is very objectively overbearing, but that has a smaller fine associated with it. This way the law is very clear on right and wrong, while also giving the businesses time and incentive to change their practices without having to sink large amount of expenses into lawyers to review every minute detail, which is the logical conclusion of the one infraction bankrupt system that you seem to be supporting. Then you write a law that explicitally state what you can do and what is not allowed is forbidden by default.
  • 0 Stimmen
    1 Beiträge
    11 Aufrufe
    Niemand hat geantwortet