Skip to content

Vibe coding service Replit deleted production database

Technology
118 73 449
  • Shit, deleting prod is my signature move! AI is coming for my job 😵

    Just know your worth. You can do it cheaper!

  • Not mad about an estimated usage bill of $8k per month.
    Just hire a developer

    But then how would he feel so special and smart about "doing it himself"???? Come on man, think of the rich fratboys!! They NEED to feel special and smart!!!

  • Title should be “user give database prod access to a llm which deleted the db, user did not have any backup and used the same db for prod and dev”. Less sexy and less llm fault.
    This is weird it’s like the last 50 years of software development principles are being ignored.

    But like the whole 'vibe coding' message is the LLM knows all this stuff so you don't have to.

    This isn't some "LLM can do some code completion/suggestions" it's "LLM is so magical you can be an idiot with no skills/training and still produce full stack solutions".

  • it talks like a human so it must be smart like a human.

    Yikes. Have those people... talked to other people before?

    Yes, and they were all as smart at humans. 😉

    So mostly average but some absolute thickos too.

  • This post did not contain any content.

    The [AI] safety stuff is more visceral to me after a weekend of vibe hacking,” Lemkin said. I explicitly told it eleven times in ALL CAPS not to do this. I am a little worried about safety now.

    This sounds like something straight out of The Onion.

  • The [AI] safety stuff is more visceral to me after a weekend of vibe hacking,” Lemkin said. I explicitly told it eleven times in ALL CAPS not to do this. I am a little worried about safety now.

    This sounds like something straight out of The Onion.

    The Pink Elephant problem of LLMs. You can not reliably make them NOT do something.

  • What are they helpful tools for then? A study showed that they make experienced developers 19% slower.

    Vibe coding you do end up spending a lot of time waiting for prompts, so I get the results of that study.

    I fall pretty deep in the power user category for LLMs, so I don’t really feel that the study applies well to me, but also I acknowledge I can be biased there.

    I have custom proprietary MCPs for semantic search over my code bases that lets AI do repeated graph searches on my code (imagine combining language server, ctags, networkx, and grep+fuzzy search). That is way faster than iteratively grepping and code scanning manually with a low chance of LLM errors. By the time I open GitHub code search or run ripgrep Claude has used already prioritized and listed my modules to investigate.

    That tool alone with an LLM can save me half a day of research and debugging on complex tickets, which pays for an AI subscription alone. I have other internal tools to accelerate work too.

    I use it to organize my JIRA tickets and plan my daily goals. I actually get Claude to do a lot of triage for me before I even start a task, which cuts the investigation phase to a few minutes on small tasks.

    I use it to review all my PRs before I ask a human to look, it catches a lot of small things and can correct them, then the PR avoids the bike shedding nitpicks some reviewers love. Claude can do this, Copilot will only ever point out nitpicks, so the model makes a huge difference here. But regardless, 1 fewer review request cycle helps keep things moving.

    It’s a huge boon to debugging — much faster than searching errors manually. Especially helpful on the types of errors you have to rabbit hole GitHub issue content chains to solve.

    It’s very fast to get projects to MVP while following common structure/idioms, and can help write unit tests quickly for me. After the MVP stage it sucks and I go back to manually coding.

    I use it to generate code snippets where documentation sucks. If you look at the ibis library in Python for example the docs are Byzantine and poorly organized. LLMs are better at finding the relevant docs than I am there. I mostly use LLM search instead of manual for doc search now.

    I have a lot of custom scripts and calculators and apps that I made with it which keep me more focused on my actual work and accelerate things.

    I regularly have the LLM help me write bash or python or jq scripts when I need to audit codebases for large refactors. That’s low maintenance one off work that can be easily verified but complex to write. I never remember the syntax for bash and jq even after using them for years.

    I guess the short version is I tend to build tools for the AI, then let the LLM use those tools to improve and accelerate my workflows. That returns a lot of time back to me.

    I do try vibe coding but end up in the same time sink traps as the study found. If the LLM is ever wrong, you save time forking the chat than trying to realign it, but it’s still likely to be slower. Repeat chats result in the same pitfalls for complex issues and bugs, so you have to abandon that state quickly.

    Vibe coding small revisions can still be a bit faster and it’s great at helping me with documentation.

  • This post did not contain any content.

    It sounds like this guy was also relying on the AI to self-report status. Did any of this happen? Like is the replit AI really hooked up to a CLI, did it even make a DB to start with, was there anything useful in it, and did it actually delete it?

    Or is this all just a long roleplaying session where this guy pretends to run a business and the AI pretends to do employee stuff for him?

    Because 90% of this article is "I asked the AI and it said:" which is not a reliable source for information.

  • I explicitly told it eleven times in ALL CAPS not to do this. I am a little worried about safety now.

    Well then, that settles it, this should never have happened.

    I don’t think putting complex technical info in front of non technical people like this is a good idea. When it comes to LLMs, they cannot do any work that you yourself do not understand.

    That goes for math, coding, health advice, etc.

    If you don’t understand then you don’t know what they’re doing wrong. They’re helpful tools but only in this context.

    When it comes to LLMs, they cannot do any work that you yourself do not understand.

    And even if they could how would you ever validate it if you can't understand it.

  • The Pink Elephant problem of LLMs. You can not reliably make them NOT do something.

    Just say 12 times next time

  • Vibe coding you do end up spending a lot of time waiting for prompts, so I get the results of that study.

    I fall pretty deep in the power user category for LLMs, so I don’t really feel that the study applies well to me, but also I acknowledge I can be biased there.

    I have custom proprietary MCPs for semantic search over my code bases that lets AI do repeated graph searches on my code (imagine combining language server, ctags, networkx, and grep+fuzzy search). That is way faster than iteratively grepping and code scanning manually with a low chance of LLM errors. By the time I open GitHub code search or run ripgrep Claude has used already prioritized and listed my modules to investigate.

    That tool alone with an LLM can save me half a day of research and debugging on complex tickets, which pays for an AI subscription alone. I have other internal tools to accelerate work too.

    I use it to organize my JIRA tickets and plan my daily goals. I actually get Claude to do a lot of triage for me before I even start a task, which cuts the investigation phase to a few minutes on small tasks.

    I use it to review all my PRs before I ask a human to look, it catches a lot of small things and can correct them, then the PR avoids the bike shedding nitpicks some reviewers love. Claude can do this, Copilot will only ever point out nitpicks, so the model makes a huge difference here. But regardless, 1 fewer review request cycle helps keep things moving.

    It’s a huge boon to debugging — much faster than searching errors manually. Especially helpful on the types of errors you have to rabbit hole GitHub issue content chains to solve.

    It’s very fast to get projects to MVP while following common structure/idioms, and can help write unit tests quickly for me. After the MVP stage it sucks and I go back to manually coding.

    I use it to generate code snippets where documentation sucks. If you look at the ibis library in Python for example the docs are Byzantine and poorly organized. LLMs are better at finding the relevant docs than I am there. I mostly use LLM search instead of manual for doc search now.

    I have a lot of custom scripts and calculators and apps that I made with it which keep me more focused on my actual work and accelerate things.

    I regularly have the LLM help me write bash or python or jq scripts when I need to audit codebases for large refactors. That’s low maintenance one off work that can be easily verified but complex to write. I never remember the syntax for bash and jq even after using them for years.

    I guess the short version is I tend to build tools for the AI, then let the LLM use those tools to improve and accelerate my workflows. That returns a lot of time back to me.

    I do try vibe coding but end up in the same time sink traps as the study found. If the LLM is ever wrong, you save time forking the chat than trying to realign it, but it’s still likely to be slower. Repeat chats result in the same pitfalls for complex issues and bugs, so you have to abandon that state quickly.

    Vibe coding small revisions can still be a bit faster and it’s great at helping me with documentation.

    Don't you have any security concerns with sending all your code and JIRA tickets to some companies servers? My boss wouldn't be pleased if I send anything that's deemed a company secret over unencrypted channels.

  • First time I'm hearing them be related to vibe coding. They've been very respectable in the past, especially with their open-source CodeMirror.

    Yeah they limited people to 3 projects and pushed AI into front at some point.

    They advertise themselves as a CLOUD IDE POWERED BY AI now.

  • What are they helpful tools for then? A study showed that they make experienced developers 19% slower.

    I'm not the person you're replying to but the one thing I've found them helpful for is targeted search.

    I can ask it a question and then access its sources from whatever response it generates to read and review myself.

    Kind of a simpler, free LexisNexis.

  • This post did not contain any content.

    The founder of SaaS business development outfit SaaStr has claimed AI coding tool Replit deleted a database despite his instructions not to change any code without permission.

    Sounds like an absolute diSaaStr...

  • It sounds like this guy was also relying on the AI to self-report status. Did any of this happen? Like is the replit AI really hooked up to a CLI, did it even make a DB to start with, was there anything useful in it, and did it actually delete it?

    Or is this all just a long roleplaying session where this guy pretends to run a business and the AI pretends to do employee stuff for him?

    Because 90% of this article is "I asked the AI and it said:" which is not a reliable source for information.

    It seemed like the llm had decided it was in a brat scene and was trying to call down the thunder.

  • Don't you have any security concerns with sending all your code and JIRA tickets to some companies servers? My boss wouldn't be pleased if I send anything that's deemed a company secret over unencrypted channels.

    The tool isn’t returning all code, but it is sending code.

    I had discussions with my CTO and security team before integrating Claude code.

    I have to use Gemini in one specific workflow and Gemini had a lot of landlines for how they use your data. Anthropic was easier to understand.

    Anthropic also has some guidance for running Claude Code in a container with firewall and your specified dev tools, it works but that’s not my area of expertise.

    The container doesn’t solve all the issues like using remote servers, but it does let you restrict what files and network requests Claude can access (so e.g. Claude can’t read your env vars or ssh key files).

    I do try local LLMs but they’re not there yet on my machine for most use cases. Gemma 3n is decent if you need small model performance and tool calls, phi4 works but isn’t thinking (the thinking variants are awful), and I’m exploring dream coder and diffusion models. R1 is still one of the best local models but frequently overthinks, even the new release. Context window is the largest limiting factor I find locally.

  • This post did not contain any content.

    The world's most overconfident virtual intern strikes again.

    Also, who the flying fuck are either of these companies? 1000 records is nothing. That's a fucking text file.

  • They could hire on a contractor and eschew all those costs.

    I’ve done contract work before, this seems a good fit (defined problem plus budget, unknown timeline, clear requirements)

    That's what I meant by hiring a self-employed freelancer. I don't know a lot about contracting so maybe I used the wrong phrase.

  • I'm not the person you're replying to but the one thing I've found them helpful for is targeted search.

    I can ask it a question and then access its sources from whatever response it generates to read and review myself.

    Kind of a simpler, free LexisNexis.

    One built a bunch of local search tools with MCP and that’s where I get a lot of my value out of it

    RAG workflows are incredibly useful and with modern agents and tool calls work very well.

    They kind of went out of style but it’s a perfect use case.

  • The tool isn’t returning all code, but it is sending code.

    I had discussions with my CTO and security team before integrating Claude code.

    I have to use Gemini in one specific workflow and Gemini had a lot of landlines for how they use your data. Anthropic was easier to understand.

    Anthropic also has some guidance for running Claude Code in a container with firewall and your specified dev tools, it works but that’s not my area of expertise.

    The container doesn’t solve all the issues like using remote servers, but it does let you restrict what files and network requests Claude can access (so e.g. Claude can’t read your env vars or ssh key files).

    I do try local LLMs but they’re not there yet on my machine for most use cases. Gemma 3n is decent if you need small model performance and tool calls, phi4 works but isn’t thinking (the thinking variants are awful), and I’m exploring dream coder and diffusion models. R1 is still one of the best local models but frequently overthinks, even the new release. Context window is the largest limiting factor I find locally.

    I have to use Gemini in one specific workflow

    I would love some story on why AI is needed at all.

  • 149 Stimmen
    22 Beiträge
    0 Aufrufe
    thebat@lemmy.worldT
    I was looking for some games to pass time in waiting rooms etc and was disappointed to see even Bejeweled has 'contains ads' & 'in-app purchases' warnings on play store. Why can't I outright buy it like I already have on Steam?
  • 436 Stimmen
    63 Beiträge
    481 Aufrufe
    M
    https://lemmy.zip/comment/20130478 Because you started talking to me about it dummy.
  • 11 Stimmen
    20 Beiträge
    129 Aufrufe
    jimmydoreisalefty@lemmy.worldJ
    No, re-read. It is about technology.
  • Google kills the fact-checking snippet

    Technology technology
    13
    150 Stimmen
    13 Beiträge
    73 Aufrufe
    L
    Remember when that useless bot was around here, objectively wrong, and getting downvoted all the time? Good times.
  • 1 Stimmen
    2 Beiträge
    21 Aufrufe
    A
    If you're a developer, a startup founder, or part of a small team, you've poured countless hours into building your web application. You've perfected the UI, optimized the database, and shipped features your users love. But in the rush to build and deploy, a critical question often gets deferred: is your application secure? For many, the answer is a nervous "I hope so." The reality is that without a proper defense, your application is exposed to a barrage of automated attacks hitting the web every second. Threats like SQL Injection, Cross-Site Scripting (XSS), and Remote Code Execution are not just reserved for large enterprises; they are constant dangers for any application with a public IP address. The Security Barrier: When Cost and Complexity Get in the Way The standard recommendation is to place a Web Application Firewall (WAF) in front of your application. A WAF acts as a protective shield, inspecting incoming traffic and filtering out malicious requests before they can do any damage. It’s a foundational piece of modern web security. So, why doesn't everyone have one? Historically, robust WAFs have been complex and expensive. They required significant budgets, specialized knowledge to configure, and ongoing maintenance, putting them out of reach for students, solo developers, non-profits, and early-stage startups. This has created a dangerous security divide, leaving the most innovative and resource-constrained projects the most vulnerable. But that is changing. Democratizing Security: The Power of a Community WAF Security should be a right, not a privilege. Recognizing this, the landscape is shifting towards more accessible, community-driven tools. The goal is to provide powerful, enterprise-grade protection to everyone, for free. This is the principle behind the HaltDos Community WAF. It's a no-cost, perpetually free Web Application Firewall designed specifically for the community that has been underserved for too long. It’s not a stripped-down trial version; it’s a powerful security tool designed to give you immediate and effective protection against the OWASP Top 10 and other critical web threats. What Can You Actually Do with It? With a community WAF, you can deploy a security layer in minutes that: Blocks Malicious Payloads: Get instant, out-of-the-box protection against common attack patterns like SQLi, XSS, RCE, and more. Stops Bad Bots: Prevent malicious bots from scraping your content, attempting credential stuffing, or spamming your forms. Gives You Visibility: A real-time dashboard shows you exactly who is trying to attack your application and what methods they are using, providing invaluable security intelligence. Allows Customization: You can add your own custom security rules to tailor the protection specifically to your application's logic and technology stack. The best part? It can be deployed virtually anywhere—on-premises, in a private cloud, or with any major cloud provider like AWS, Azure, or Google Cloud. Get Started in Minutes You don't need to be a security guru to use it. The setup is straightforward, and the value is immediate. Protecting the project, you've worked so hard on is no longer a question of budget. Download: Get the free Community WAF from the HaltDos site. Deploy: Follow the simple instructions to set it up with your web server (it’s compatible with Nginx, Apache, and others). Secure: Watch the dashboard as it begins to inspect your traffic and block threats in real-time. Security is a journey, but it must start somewhere. For developers, startups, and anyone running a web application on a tight budget, a community WAF is the perfect first step. It's powerful, it's easy, and it's completely free.
  • The world could experience a year above 2°C of warming by 2029

    Technology technology
    17
    1
    200 Stimmen
    17 Beiträge
    94 Aufrufe
    sattarip@lemmy.blahaj.zoneS
    Thank you for the clarification.
  • What was Radiant AI, anyway?

    Technology technology
    6
    1
    20 Stimmen
    6 Beiträge
    41 Aufrufe
    T
    In fact Daggerfall was almost nothing but quests and other content like that.
  • 478 Stimmen
    81 Beiträge
    380 Aufrufe
    douglasg14b@lemmy.worldD
    Did I say that it did? No? Then why the rhetorical question for something that I never stated? Now that we're past that, I'm not sure if I think it's okay, but I at least recognize that it's normalized within society. And has been for like 70+ years now. The problem happens with how the data is used, and particularly abused. If you walk into my store, you expect that I am monitoring you. You expect that you are on camera and that your shopping patterns, like all foot traffic, are probably being analyzed and aggregated. What you buy is tracked, at least in aggregate, by default really, that's just volume tracking and prediction. Suffice to say that broad customer behavior analysis has been a thing for a couple generations now, at least. When you go to a website, why would you think that it is not keeping track of where you go and what you click on in the same manner? Now that I've stated that I do want to say that the real problems that we experience come in with how this data is misused out of what it's scope should be. And that we should have strong regulatory agencies forcing compliance of how this data is used and enforcing the right to privacy for people that want it removed.