Skip to content

Apple just proved AI "reasoning" models like Claude, DeepSeek-R1, and o3-mini don't actually reason at all. They just memorize patterns really well.

Technology
356 149 44
  • I'd encourage you to research more about this space and learn more.

    As it is, the statement "Markov chains are still the basis of inference" doesn't make sense, because markov chains are a separate thing. You might be thinking of Markov decision processes, which is used in training RL agents, but that's also unrelated because these models are not RL agents, they're supervised learning agents. And even if they were RL agents, the MDP describes the training environment, not the model itself, so it's not really used for inference.

    I mean this just as an invitation to learn more, and not pushback for raising concerns. Many in the research community would be more than happy to welcome you into it. The world needs more people who are skeptical of AI doing research in this field.

    Which method, then, is the inference built upon, if not the embeddings? And the question still stands, how does "AI" escape the inherent limits of statistical inference?

  • You’re absolutely right that inference in an LLM is a fixed, deterministic function after training, and that the input space is finite due to the discrete token vocabulary and finite context length. So yes, in theory, you could precompute every possible input-output mapping and store them in a giant table. That much is mathematically valid. But where your argument breaks down is in claiming that this makes an LLM equivalent to a conventional Markov chain in function or behavior.

    A Markov chain is not simply defined as “a function from finite context to next-token distribution.” It is defined by a specific type of process where the next state depends on the current state via fixed transition probabilities between discrete states. The model operates over symbolic states with no internal computation. LLMs, even during inference, compute outputs via multi-layered continuous transformations, with attention mixing, learned positional embeddings, and non-linear activations. These mechanisms mean that while the function is fixed, its structure does not resemble a state machine—it resembles a hierarchical pattern recognizer and function approximator.

    Your claim is essentially that “any deterministic function over a finite input space is equivalent to a table.” This is true in a computational sense but misleading in a representational and behavioral sense. If I gave you a function that maps 4096-bit inputs to 50257-dimensional probability vectors and said, “This is equivalent to a transition table,” you could technically agree, but the structure and generative capacity of that function is not Markovian. That function may simulate reasoning, abstraction, and composition. A Markov chain never does.

    You are collapsing implementation equivalence (yes, the function could be stored in a table) with model equivalence (no, it does not behave like a Markov chain). The fact that you could freeze the output behavior into a lookup structure doesn’t change that the lookup structure is derived from a fundamentally different class of computation.

    The training process doesn’t “build a Markov chain.” It builds a function that estimates conditional token probabilities via optimization over a non-Markov architecture. The inference process then applies that function. That makes it a stateless function, yes—but not a Markov chain. Determinism plus finiteness does not imply Markovian behavior.

    you wouldn't be "freezing" anything. Each possible combination of input tokens maps to one output probability distribution. Those values are fixed and they are what they are whether you compute them or not, or when, or how many times.

    Now you can either precompute the whole table (theory), or somehow compute each cell value every time you need it (practice). In either case, the resulting function (table lookup vs matrix multiplications) takes in only the context, and produces a probability distribution. And the mapping they generate is the same for all possible inputs. So they are the same function. A function can be implemented in multiple ways, but the implementation is not the function itself. The only difference between the two in this case is the implementation, or more specifically, whether you precompute a table or not. But the function itself is the same.

    You are somehow saying that your choice of implementation for that function will somehow change the function. Which means that according to you, if you do precompute (or possibly cache, full precomputation is just an infinite cache size) individual mappings it somehow magically makes some magic happen that gains some deep insight. It does not. We have already established that it is the same function.

  • LOOK MAA I AM ON FRONT PAGE

    WTF does the author think reasoning is

  • That depends on your assumption that the left would have anything relevant to gain by embracing AI (whatever that's actually supposed to mean).

    Saw this earlier in the week and thought of you. These short, funny videos are popping up more and more and they're only getting better. They’re sharp, engaging, and they spread like wildfire.

    You strike me as someone who gets it what it means when one side embraces the latest tools while the other rejects them.

    The left is still holed up on Lemmy, clinging to “Fuck AI” groups. But why? Go back to the beginning. Look at the early coverage of AI it was overwhelmingly targeted at left-leaning spaces, full of panic and doom. Compare that to how the right talks about immigration. The headlines are cut and pasted from each other. Same playbook, different topic. The media set out to alienate the left from these tools.

  • Saw this earlier in the week and thought of you. These short, funny videos are popping up more and more and they're only getting better. They’re sharp, engaging, and they spread like wildfire.

    You strike me as someone who gets it what it means when one side embraces the latest tools while the other rejects them.

    The left is still holed up on Lemmy, clinging to “Fuck AI” groups. But why? Go back to the beginning. Look at the early coverage of AI it was overwhelmingly targeted at left-leaning spaces, full of panic and doom. Compare that to how the right talks about immigration. The headlines are cut and pasted from each other. Same playbook, different topic. The media set out to alienate the left from these tools.

    I don't have even the slightest idea what that video is supposed to mean. (Happy cake day tho.)

  • I don't have even the slightest idea what that video is supposed to mean. (Happy cake day tho.)

    Come on, you know what I’m talking about. It’s a channel that started with AI content and is now pivoting to videos about the riots. You can see where this is going. Sooner or later, it’ll expand into targeting protestors and other left-leaning causes.

    It’s a novelty now, but it’s spreading fast, and more channels like it are popping up every day.

    Meanwhile, the left is losing ground. Losing cultural capture. Because as a group, they’re being manipulated into isolating themselves from the very tools and platforms that shape public opinion. Social media. AI. All of it. They're walking away from the battlefield while the other side builds momentum.

  • Come on, you know what I’m talking about. It’s a channel that started with AI content and is now pivoting to videos about the riots. You can see where this is going. Sooner or later, it’ll expand into targeting protestors and other left-leaning causes.

    It’s a novelty now, but it’s spreading fast, and more channels like it are popping up every day.

    Meanwhile, the left is losing ground. Losing cultural capture. Because as a group, they’re being manipulated into isolating themselves from the very tools and platforms that shape public opinion. Social media. AI. All of it. They're walking away from the battlefield while the other side builds momentum.

    you know what I’m talking about

    But I literally don't. Well, I didn't but now I mostly do, since you explained it.

    I get what you're saying with regards to the isolation, this issue has already been raised when many left-wing people started to leave Twitter. But it is opening a whole new can of worms - these profiles that post AI-generated content are largely not managed by ordinary people with their private agendas (sharing neat stuff, political agitation, etc.), but by bots, and are also massively followed and supported by other bot profiles. Much the same on Twitter with its hordes of right-wing troll profiles, and as I'm still somewhat active on reddit I also notice blatant manipluation there as well (my country had elections a few weeks ago and the flood of new profiles less than one week old spamming idiotic propaganda and insults was too obvious). It's not organic online behaviour and it can't really be fought by organic behaviour, especially when the big social media platforms give up the tools to fight it (relaxing their moderation standards, removing fact-checking, etc.). Lemmy and Mastodon etc. are based on the idea(l) that this corporate-controlled area is not the only space where meaningful activity can happen.

    So that's one side of the story, AI is not something happening in a vacuum and that you just have to submit to your own will. The other side of the story, the actual abilities of AI, have already been discussed, we've seen sufficiently that it's not that good at helping people form more solidly developed and truth-based stances. Maybe it could be used to spread the sort of mass-produced manipulative bullshit that is already used by the right, but I can't honestly support such stuff. In this regard, we can doubt whether there is any ground to win for the left (would the left's possible audience actually eat it up), and if yes, whether it is worth it (basing your political appeal on bullshit can bite you in the ass down the line).

    As for the comparison to discourse around immigrants, again I still don't fully understand the point other than on the most surface level (the media is guiding people what to think, duh).

  • You are either vastly overestimating the Language part of an LLM or simplifying human physiology back to the Greek's Four Humours theory.

    No. I'm not. You're nothing more than a protein based machine on a slow burn. You don't even have control over your own decisions. This is a proven fact. You're just an ad hoc justification machine.

  • No. I'm not. You're nothing more than a protein based machine on a slow burn. You don't even have control over your own decisions. This is a proven fact. You're just an ad hoc justification machine.

    How many trillions of neuron firings and chemical reactions are taking place for my machine to produce an output?
    Where are these taking place and how do these regions interact? What are the rules for storing and reshaping memory in response to stimulus? How many bytes of information would it take to describe and simulate all of these systems together?

    The human brain alone has the capacity for about 2.5PB of data. Our sensory systems feed data at a rate of about 10^9^ bits/s. The entire English language, compressed, is about 30MB. I can download and run an LLM with just a few GB. Even the largest context windows are still well under 1GB of data.

    Just because two things both find and reproduce patterns does not mean they are equivalent. Saying language and biological organisms both use "bytes" is just about as useful as saying the entire universe is "bytes"; it doesn't really mean anything.

  • Except that wouldn't explain conscience. There's absolutely no need for conscience or an illusion(*) of conscience. Yet we have it.

    • arguably, conscience can by definition not be an illusion. We either perceive "ourselves" or we don't

    How do you define consciousness?

  • How do you define consciousness?

    It's the thing that the only person who can know for sure you have it is you yourself. If you have to ask, I might have to assume you could be a biological machine.

  • It's the thing that the only person who can know for sure you have it is you yourself. If you have to ask, I might have to assume you could be a biological machine.

    Is that useful for completing tasks?

  • 40 Stimmen
    2 Beiträge
    0 Aufrufe
    C
    From the same source, Blacklight is really good. https://themarkup.org/series/blacklight Blacklight is a Real-Time Website Privacy Inspector. Enter the address of any website, and Blacklight will scan it and reveal the specific user-tracking technologies on the site So you can see what's happening on a site before you visit it
  • 2 Stimmen
    1 Beiträge
    0 Aufrufe
    Niemand hat geantwortet
  • 1 Stimmen
    2 Beiträge
    4 Aufrufe
    A
    If you're a developer, a startup founder, or part of a small team, you've poured countless hours into building your web application. You've perfected the UI, optimized the database, and shipped features your users love. But in the rush to build and deploy, a critical question often gets deferred: is your application secure? For many, the answer is a nervous "I hope so." The reality is that without a proper defense, your application is exposed to a barrage of automated attacks hitting the web every second. Threats like SQL Injection, Cross-Site Scripting (XSS), and Remote Code Execution are not just reserved for large enterprises; they are constant dangers for any application with a public IP address. The Security Barrier: When Cost and Complexity Get in the Way The standard recommendation is to place a Web Application Firewall (WAF) in front of your application. A WAF acts as a protective shield, inspecting incoming traffic and filtering out malicious requests before they can do any damage. It’s a foundational piece of modern web security. So, why doesn't everyone have one? Historically, robust WAFs have been complex and expensive. They required significant budgets, specialized knowledge to configure, and ongoing maintenance, putting them out of reach for students, solo developers, non-profits, and early-stage startups. This has created a dangerous security divide, leaving the most innovative and resource-constrained projects the most vulnerable. But that is changing. Democratizing Security: The Power of a Community WAF Security should be a right, not a privilege. Recognizing this, the landscape is shifting towards more accessible, community-driven tools. The goal is to provide powerful, enterprise-grade protection to everyone, for free. This is the principle behind the HaltDos Community WAF. It's a no-cost, perpetually free Web Application Firewall designed specifically for the community that has been underserved for too long. It’s not a stripped-down trial version; it’s a powerful security tool designed to give you immediate and effective protection against the OWASP Top 10 and other critical web threats. What Can You Actually Do with It? With a community WAF, you can deploy a security layer in minutes that: Blocks Malicious Payloads: Get instant, out-of-the-box protection against common attack patterns like SQLi, XSS, RCE, and more. Stops Bad Bots: Prevent malicious bots from scraping your content, attempting credential stuffing, or spamming your forms. Gives You Visibility: A real-time dashboard shows you exactly who is trying to attack your application and what methods they are using, providing invaluable security intelligence. Allows Customization: You can add your own custom security rules to tailor the protection specifically to your application's logic and technology stack. The best part? It can be deployed virtually anywhere—on-premises, in a private cloud, or with any major cloud provider like AWS, Azure, or Google Cloud. Get Started in Minutes You don't need to be a security guru to use it. The setup is straightforward, and the value is immediate. Protecting the project, you've worked so hard on is no longer a question of budget. Download: Get the free Community WAF from the HaltDos site. Deploy: Follow the simple instructions to set it up with your web server (it’s compatible with Nginx, Apache, and others). Secure: Watch the dashboard as it begins to inspect your traffic and block threats in real-time. Security is a journey, but it must start somewhere. For developers, startups, and anyone running a web application on a tight budget, a community WAF is the perfect first step. It's powerful, it's easy, and it's completely free.
  • 833 Stimmen
    96 Beiträge
    12 Aufrufe
    J
    Because there is profit in child exploitation.
  • Telegram partners with xAI to bring Grok to over a billion users

    Technology technology
    36
    1
    38 Stimmen
    36 Beiträge
    5 Aufrufe
    R
    So you pay taxes to Putin. Good to know who actually helps funding the regime. I suggest you go someplace else. I won't take this from a jerk from likely one of the countries buying fossil fuels from said regime, that have also supported it after a few falsified elections starting in 1996, which is also the year I was born. And of course "paying taxes to Putin" can't be even compared to what TG is doing, so just shut up and go do something you know how to do, like I dunno what.
  • 20 Stimmen
    1 Beiträge
    3 Aufrufe
    Niemand hat geantwortet
  • 0 Stimmen
    3 Beiträge
    3 Aufrufe
    entropicdrift@lemmy.sdf.orgE
    Nextdoor is an absolute black hole social media site, it absorbs the worst of humanity so we don't have to see them anywhere else.
  • Instacart CEO Fidji Simo is joining OpenAI as CEO of Applications

    Technology technology
    2
    1
    20 Stimmen
    2 Beiträge
    5 Aufrufe
    paraphrand@lemmy.worldP
    overseeing product development for Facebook Video So she’s the one who oversaw the misleading Facebook Video numbers that destroyed a whole swath of websites?