Skip to content

Apple just proved AI "reasoning" models like Claude, DeepSeek-R1, and o3-mini don't actually reason at all. They just memorize patterns really well.

Technology
347 149 17
  • Claiming it's just marketing fluff is indicates you do not know what you're talking about.

    They published a research paper on it. You are free to publish your own paper disproving theirs.

    At the moment, you sound like one of those "I did my own research" people except you didn't even bother doing your own research.

    You misunderstand. I do not take issue with anything that’s written in the scientific paper. What I take issue with is how the paper is marketed to the general public. When you read the article you will see that it does not claim to “proof” that these models cannot reason. It merely points out some strengths and weaknesses of the models.

  • Yes, LLM inference consists of deterministic matrix multiplications applied to the current context. But that simplicity in operations does not make it equivalent to a Markov chain. The definition of a Markov process requires that the next output depends only on the current state. You’re assuming that the LLM’s “state” is its current context window. But in an LLM, this “state” is not discrete. It is a structured, deeply encoded set of vectors shaped by non-linear transformations across layers. The state is not just the visible tokens—it is the full set of learned representations computed from them.

    A Markov chain transitions between discrete, enumerable states with fixed transition probabilities. LLMs instead apply a learned function over a high-dimensional, continuous input space, producing outputs by computing context-sensitive interactions. These interactions allow generalization and compositionality, not just selection among known paths.

    The fact that inference uses fixed weights does not mean it reduces to a transition table. The output is computed by composing multiple learned projections, attention mechanisms, and feedforward layers that operate in ways no Markov chain ever has. You can’t describe an attention head with a transition matrix. You can’t reduce positional encoding or attention-weighted context mixing into state transitions. These are structured transformations, not symbolic transitions.

    You can describe any deterministic process as a function, but not all deterministic functions are Markovian. What makes a process Markov is not just forgetting prior history. It is having a fixed, memoryless probabilistic structure where transitions depend only on a defined discrete state. LLMs don’t transition between states in this sense. They recompute probability distributions from scratch each step, based on context-rich, continuous-valued encodings. That is not a Markov process. It’s a stateless function approximator conditioned on a window, built to generalize across unseen input patterns.

    the fact that it is a fixed function, that only depends on the context AND there are a finite number of discrete inputs possible does make it equivalent to a huge, finite table. You really don't want this to be true. And again, you are describing training. Once training finishes anything you said does not apply anymore and you are left with fixed, unchanging matrices, which in turn means that it is a mathematical function of the context (by the mathematical definition of "function". stateless, and deterministic) which also has the property that the set of all possible inputs is finite. So the set of possible outputs is also finite and strictly smaller or equal to the size of the set of possible inputs. This makes the actual function that the tokens are passed through CAN be precomputed in full (in theory) making it equivalent to a conventional state transition table.

    This is true whether you'd like it to or not. The training process builds a markov chain.

  • This paper does provide a solid proof by counterexample of reasoning not occuring (following an algorithm) when it should.

    The paper doesn't need to prove that reasoning never has or will occur. It's only demonstrates that current claims of AI reasoning are overhyped.

    It does need to do that to meaningfully change anything, however.

  • Intuition is about the only thing it has. It's a statistical system. The problem is it doesn't have logic. We assume because its computer based that it must be more logic oriented but it's the opposite. That's the problem. We can't get it to do logic very well because it basically feels out the next token by something like instinct. In particular it doesn't mask or disconsider irrelevant information very well if two segments are near each other in embedding space, which doesn't guarantee relevance. So then the model is just weighing all of this info, relevant or irrelevant to a weighted feeling for the next token.

    This is the core problem. People can handle fuzzy topics and discrete topics. But we really struggle to create any system that can do both like we can. Either we create programming logic that is purely discrete or we create statistics that are fuzzy.

    Of course this issue of masking out information that is close in embedding space but is irrelevant to a logical premise is something many humans suck at too. But high functioning humans don't and we can't get these models to copy that ability. Too many people, sadly many on the left in particular, not only will treat association as always relevant but sometimes as equivalence. RE racism is assoc with nazism is assoc patriarchy is historically related to the origins of capitalism ∴ nazism ≡ capitalism. While national socialism was anti-capitalist. Associative thinking removes nuance. And sadly some people think this way. And they 100% can be replaced by LLMs today, because at least the LLM is mimicking what logic looks like better though still built on blind association. It just has more blind associations and finetune weighting for summing them. More than a human does. So it can carry that to mask as logical further than a human who is on the associative thought train can.

    You had a compelling description of how ML models work and just had to swerve into politics, huh?

  • For me it kinda went the other way, I'm almost convinced that human intelligence is the same pattern repeating, just more general (yet)

    Except that wouldn't explain conscience. There's absolutely no need for conscience or an illusion(*) of conscience. Yet we have it.

    • arguably, conscience can by definition not be an illusion. We either perceive "ourselves" or we don't
  • Wow it's almost like the computer scientists were saying this from the start but were shouted over by marketing teams.

    And engineers who stood to make a lot of money

  • It does need to do that to meaningfully change anything, however.

    Other way around. The claimed meaningful change (reasoning) has not occurred.

  • LOOK MAA I AM ON FRONT PAGE

    hey I cant recognize patterns so theyre smarter than me at least

  • Other way around. The claimed meaningful change (reasoning) has not occurred.

    Meaningful change is not happening because of this paper, either, I don't know why you're playing semantic games with me though.

  • I think it's an easy mistake to confuse sentience and intelligence. It happens in Hollywood all the time - "Skynet began learning at a geometric rate, on July 23 2004 it became self-aware" yadda yadda

    But that's not how sentience works. We don't have to be as intelligent as Skynet supposedly was in order to be sentient. We don't start our lives as unthinking robots, and then one day - once we've finally got a handle on calculus or a deep enough understanding of the causes of the fall of the Roman empire - we suddenly blink into consciousness. On the contrary, even the stupidest humans are accepted as being sentient. Even a young child, not yet able to walk or do anything more than vomit on their parents' new sofa, is considered as a conscious individual.

    So there is no reason to think that AI - whenever it should be achieved, if ever - will be conscious any more than the dumb computers that precede it.

    Good point.

  • Meaningful change is not happening because of this paper, either, I don't know why you're playing semantic games with me though.

    I don't know why you're playing semantic games

    I'm trying to highlight the goal of this paper.

    This is a knock them down paper by Apple justifying (to their shareholders) their non investment in LLMs. It is not a build them up paper trying for meaningful change and to create a better AI.

  • I don't know why you're playing semantic games

    I'm trying to highlight the goal of this paper.

    This is a knock them down paper by Apple justifying (to their shareholders) their non investment in LLMs. It is not a build them up paper trying for meaningful change and to create a better AI.

    That's not the only way to make meaningful change, getting people to give up on llms would also be meaningful change. This does very little for anyone who isn't apple.

  • I hate this analogy. As a throwaway whimsical quip it'd be fine, but it's specious enough that I keep seeing it used earnestly by people who think that LLMs are in any way sentient or conscious, so it's lowered my tolerance for it as a topic even if you did intend it flippantly.

    I don't mean it to extol LLM's but rather to denigrate humans. How many of us are self imprisoned in echo chambers so we can have our feelings validated to avoid the uncomfortable feeling of thinking critically and perhaps changing viewpoints?

    Humans have the ability to actually think, unlike LLM's. But it's frightening how far we'll go to make sure we don't.

  • the fact that it is a fixed function, that only depends on the context AND there are a finite number of discrete inputs possible does make it equivalent to a huge, finite table. You really don't want this to be true. And again, you are describing training. Once training finishes anything you said does not apply anymore and you are left with fixed, unchanging matrices, which in turn means that it is a mathematical function of the context (by the mathematical definition of "function". stateless, and deterministic) which also has the property that the set of all possible inputs is finite. So the set of possible outputs is also finite and strictly smaller or equal to the size of the set of possible inputs. This makes the actual function that the tokens are passed through CAN be precomputed in full (in theory) making it equivalent to a conventional state transition table.

    This is true whether you'd like it to or not. The training process builds a markov chain.

    You’re absolutely right that inference in an LLM is a fixed, deterministic function after training, and that the input space is finite due to the discrete token vocabulary and finite context length. So yes, in theory, you could precompute every possible input-output mapping and store them in a giant table. That much is mathematically valid. But where your argument breaks down is in claiming that this makes an LLM equivalent to a conventional Markov chain in function or behavior.

    A Markov chain is not simply defined as “a function from finite context to next-token distribution.” It is defined by a specific type of process where the next state depends on the current state via fixed transition probabilities between discrete states. The model operates over symbolic states with no internal computation. LLMs, even during inference, compute outputs via multi-layered continuous transformations, with attention mixing, learned positional embeddings, and non-linear activations. These mechanisms mean that while the function is fixed, its structure does not resemble a state machine—it resembles a hierarchical pattern recognizer and function approximator.

    Your claim is essentially that “any deterministic function over a finite input space is equivalent to a table.” This is true in a computational sense but misleading in a representational and behavioral sense. If I gave you a function that maps 4096-bit inputs to 50257-dimensional probability vectors and said, “This is equivalent to a transition table,” you could technically agree, but the structure and generative capacity of that function is not Markovian. That function may simulate reasoning, abstraction, and composition. A Markov chain never does.

    You are collapsing implementation equivalence (yes, the function could be stored in a table) with model equivalence (no, it does not behave like a Markov chain). The fact that you could freeze the output behavior into a lookup structure doesn’t change that the lookup structure is derived from a fundamentally different class of computation.

    The training process doesn’t “build a Markov chain.” It builds a function that estimates conditional token probabilities via optimization over a non-Markov architecture. The inference process then applies that function. That makes it a stateless function, yes—but not a Markov chain. Determinism plus finiteness does not imply Markovian behavior.

  • I'd encourage you to research more about this space and learn more.

    As it is, the statement "Markov chains are still the basis of inference" doesn't make sense, because markov chains are a separate thing. You might be thinking of Markov decision processes, which is used in training RL agents, but that's also unrelated because these models are not RL agents, they're supervised learning agents. And even if they were RL agents, the MDP describes the training environment, not the model itself, so it's not really used for inference.

    I mean this just as an invitation to learn more, and not pushback for raising concerns. Many in the research community would be more than happy to welcome you into it. The world needs more people who are skeptical of AI doing research in this field.

    Which method, then, is the inference built upon, if not the embeddings? And the question still stands, how does "AI" escape the inherent limits of statistical inference?

  • You’re absolutely right that inference in an LLM is a fixed, deterministic function after training, and that the input space is finite due to the discrete token vocabulary and finite context length. So yes, in theory, you could precompute every possible input-output mapping and store them in a giant table. That much is mathematically valid. But where your argument breaks down is in claiming that this makes an LLM equivalent to a conventional Markov chain in function or behavior.

    A Markov chain is not simply defined as “a function from finite context to next-token distribution.” It is defined by a specific type of process where the next state depends on the current state via fixed transition probabilities between discrete states. The model operates over symbolic states with no internal computation. LLMs, even during inference, compute outputs via multi-layered continuous transformations, with attention mixing, learned positional embeddings, and non-linear activations. These mechanisms mean that while the function is fixed, its structure does not resemble a state machine—it resembles a hierarchical pattern recognizer and function approximator.

    Your claim is essentially that “any deterministic function over a finite input space is equivalent to a table.” This is true in a computational sense but misleading in a representational and behavioral sense. If I gave you a function that maps 4096-bit inputs to 50257-dimensional probability vectors and said, “This is equivalent to a transition table,” you could technically agree, but the structure and generative capacity of that function is not Markovian. That function may simulate reasoning, abstraction, and composition. A Markov chain never does.

    You are collapsing implementation equivalence (yes, the function could be stored in a table) with model equivalence (no, it does not behave like a Markov chain). The fact that you could freeze the output behavior into a lookup structure doesn’t change that the lookup structure is derived from a fundamentally different class of computation.

    The training process doesn’t “build a Markov chain.” It builds a function that estimates conditional token probabilities via optimization over a non-Markov architecture. The inference process then applies that function. That makes it a stateless function, yes—but not a Markov chain. Determinism plus finiteness does not imply Markovian behavior.

    you wouldn't be "freezing" anything. Each possible combination of input tokens maps to one output probability distribution. Those values are fixed and they are what they are whether you compute them or not, or when, or how many times.

    Now you can either precompute the whole table (theory), or somehow compute each cell value every time you need it (practice). In either case, the resulting function (table lookup vs matrix multiplications) takes in only the context, and produces a probability distribution. And the mapping they generate is the same for all possible inputs. So they are the same function. A function can be implemented in multiple ways, but the implementation is not the function itself. The only difference between the two in this case is the implementation, or more specifically, whether you precompute a table or not. But the function itself is the same.

    You are somehow saying that your choice of implementation for that function will somehow change the function. Which means that according to you, if you do precompute (or possibly cache, full precomputation is just an infinite cache size) individual mappings it somehow magically makes some magic happen that gains some deep insight. It does not. We have already established that it is the same function.

  • LOOK MAA I AM ON FRONT PAGE

    WTF does the author think reasoning is

  • 1 Stimmen
    2 Beiträge
    0 Aufrufe
    A
    If you're a developer, a startup founder, or part of a small team, you've poured countless hours into building your web application. You've perfected the UI, optimized the database, and shipped features your users love. But in the rush to build and deploy, a critical question often gets deferred: is your application secure? For many, the answer is a nervous "I hope so." The reality is that without a proper defense, your application is exposed to a barrage of automated attacks hitting the web every second. Threats like SQL Injection, Cross-Site Scripting (XSS), and Remote Code Execution are not just reserved for large enterprises; they are constant dangers for any application with a public IP address. The Security Barrier: When Cost and Complexity Get in the Way The standard recommendation is to place a Web Application Firewall (WAF) in front of your application. A WAF acts as a protective shield, inspecting incoming traffic and filtering out malicious requests before they can do any damage. It’s a foundational piece of modern web security. So, why doesn't everyone have one? Historically, robust WAFs have been complex and expensive. They required significant budgets, specialized knowledge to configure, and ongoing maintenance, putting them out of reach for students, solo developers, non-profits, and early-stage startups. This has created a dangerous security divide, leaving the most innovative and resource-constrained projects the most vulnerable. But that is changing. Democratizing Security: The Power of a Community WAF Security should be a right, not a privilege. Recognizing this, the landscape is shifting towards more accessible, community-driven tools. The goal is to provide powerful, enterprise-grade protection to everyone, for free. This is the principle behind the HaltDos Community WAF. It's a no-cost, perpetually free Web Application Firewall designed specifically for the community that has been underserved for too long. It’s not a stripped-down trial version; it’s a powerful security tool designed to give you immediate and effective protection against the OWASP Top 10 and other critical web threats. What Can You Actually Do with It? With a community WAF, you can deploy a security layer in minutes that: Blocks Malicious Payloads: Get instant, out-of-the-box protection against common attack patterns like SQLi, XSS, RCE, and more. Stops Bad Bots: Prevent malicious bots from scraping your content, attempting credential stuffing, or spamming your forms. Gives You Visibility: A real-time dashboard shows you exactly who is trying to attack your application and what methods they are using, providing invaluable security intelligence. Allows Customization: You can add your own custom security rules to tailor the protection specifically to your application's logic and technology stack. The best part? It can be deployed virtually anywhere—on-premises, in a private cloud, or with any major cloud provider like AWS, Azure, or Google Cloud. Get Started in Minutes You don't need to be a security guru to use it. The setup is straightforward, and the value is immediate. Protecting the project, you've worked so hard on is no longer a question of budget. Download: Get the free Community WAF from the HaltDos site. Deploy: Follow the simple instructions to set it up with your web server (it’s compatible with Nginx, Apache, and others). Secure: Watch the dashboard as it begins to inspect your traffic and block threats in real-time. Security is a journey, but it must start somewhere. For developers, startups, and anyone running a web application on a tight budget, a community WAF is the perfect first step. It's powerful, it's easy, and it's completely free.
  • $20 for us citizens

    Technology technology
    1
    0 Stimmen
    1 Beiträge
    1 Aufrufe
    Niemand hat geantwortet
  • Whatever happened to cheap eReaders? – Terence Eden’s Blog

    Technology technology
    72
    1
    125 Stimmen
    72 Beiträge
    4 Aufrufe
    T
    This is a weirdly aggressive take without considering variables. Almost petulant seeming. 6” readers are relatively cheap no matter the brand, but cost goes up with size. $250 to $300 is what a 7.8” or 8” reader costs, but there’s not a single one I know of at 6” at that price. There’s 10” and 13” models. Are you saying they should cost the same as a Kindle? Not to mention, regarding Kindle, Amazon spent years building the brand but selling either at cost or possibly even taking a loss on the devices as they make money on the book sales. Companies who can’t do that tend to charge more. Lastly, it’s not “feature creep” to improve the devices over time, many changes are quality of life. Larger displays for those that want them. Frontlit displays, and later the addition of warm lighting. Displays essentially doubled their resolution allowing for crisper fonts and custom fonts to render well. Higher contrast displays with darker blacks for text. More recently color displays as an option. This is all progress, but it’s not free. Also, inflation is a thing and generally happens at a rate of 2% to 3% annually or thereabouts during “normal” times, and we’ve hardly been living in normal times over the last decade and a half.
  • 133 Stimmen
    80 Beiträge
    6 Aufrufe
    glizzyguzzler@lemmy.blahaj.zoneG
    Indeed I did not, we’re at a stalemate because you and I do not believe what the other is saying! So we can’t move anywhere since it’s two walls. Buuuut Tim Apple got my back for once, just saw this now!: https://lemmy.blahaj.zone/post/27197259 I’ll leave it at that, as thanks to that white paper I win! Yay internet points!
  • 50 Stimmen
    22 Beiträge
    0 Aufrufe
    B
    I hate that both trademarks exist, but I'd say using a name form a Tolkien work to develop weapons is especially wrong. Like, abject.
  • Hands-On: EufyMake E1 UV Printer

    Technology technology
    18
    1
    38 Stimmen
    18 Beiträge
    2 Aufrufe
    S
    I watched a bit of Michael Alm's video on this, but noped out when I saw all of the little boxes of consumables appearing. If regular printer ink is already exorbitant, I can only imagine what these proprietary cartridges will cost.
  • Revolutionary cooling technology emerges from Slovenia

    Technology technology
    8
    43 Stimmen
    8 Beiträge
    3 Aufrufe
    S
    You know what's even cheaper to run than this "new technology"? Breathy promotion pieces that give no evidence whatsoever to support it's claims. Way to go, PR folks.
  • 42 Stimmen
    7 Beiträge
    2 Aufrufe
    B
    Yesterday on reddit I saw a photo a patient shot over the shoulder of his doctor of his computer monitor. It had ChadGPT full with diagnosis requests. https://www.reddit.com/r/ChatGPT/comments/1keqstk/doctor_using_chatgpt_for_a_visit_due_to_knife_cut/