Skip to content

Scientists make game-changing breakthrough that could slash costs of solar panels: 'Has the potential to contribute to the energy transition'

Technology
116 80 0
  • Even crazier that it's a logarithmic graph.

    The scale seems to fit, but what the hell is going on with those tick labels?

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    Banned in North America in 3... 2...

  • You make them convex.

    You can shape them that no matter how the light falls on it, it will align to the center. Kind of like how satellite dishes work but in reverse.

    You can shape them that no matter how the light falls on it, it will align to the center. Kind of like how satellite dishes work but in reverse.

    how do you do this, actually? I'm curious about the details because I just watched a video on compound parabolic reflectors, haha

    a regular (ideal) convex lens with a single focal point will have the image move around as the light source moves across the sky. AFAIK satellite dishes tend to be paraboloids, which focus parallel rays onto the focal point, and if you change the angle of the light source, you'll start losing focus. Stuff like the DSN and radio telescopes absolutely do have to aim and track their targets (or are forced to follow the rotation of the earth).

    satellite dishes that are aimed towards geostationary satellites don't have to move (because their targets are stationary in the sky), while stuff like starlink tracks targets with a phased array.

  • Marketing. Fresnel lenses are not going to do well with diffuse light.

    Maybe I'm misunderstanding but wouldn't diffuse light be what it's going to be best at? While it'd be worse on a sunny day when there is an optimal single direction for the light to come in?

    It's the opposite of a light house fresnel lens - instead of scattering the light source evenly out, it'll capture diffuse incoming rays from random directions better and concentrate it on the photovoltaic cell? However it would be at the cost of being able to capture direct sunlight efficiently as only some of the lens would ever be in the best position to capture the direct rays?

  • Could have some refraction or hologram thing that bends the light the right way, maybe? Or like a matte glass that equalises the load.

    Or why not just use (big) mirrors?

    Won't help with heat ofc!

    Or why not just use (big) mirrors?

    I mean, this is a thing with solar concentrators already, haha

    and for those the heat is a feature 😛

  • That was Fraunhofer IIS not ISE.

    Fraunhofer IIS and Fraunhofer ISE are part of the same organization.

    They are different institutes in the same Fraunhofer Society.

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    Oh don't worry, I'm sure the capitalist system will manage to fuck it up somehow.

  • Yeah the problem has always been that solar panels only really like to operate within a very narrow temperature band. It's why you can't just plate the Sahara desert in solar panels. In theory that would generate loads of power but the heat of the desert is way outside of their operating range.

    There's been loads of ideas to heat/cool solar panels, the problem up until now has always been to do that without cutting into the panel's efficiency so much that it isn't worth doing.

    But there's been videos on YouTube of people cooling solar panels with plasma cooling and phase change materials for a few years now.

    Biosolar roofs work for rooftop applications

  • They probably did, but like they said, the heating is probably the issue.

    I can see them adding a cooling element. Maybe even water cooling.

    If they could implement water cooling, and then use the heated water in a central heating station for house warming, it would be genius.

  • Oh don't worry, I'm sure the capitalist system will manage to fuck it up somehow.

    "If we allow german solar panels into america it will destroy our good hard working american businesses. Tarriffs on german solar panels of 69%!"

  • Would a UV filtering lens help? Do solar cells generate more power from certain parts of the light spectrum?

    With one layer the case is simple. There is a certain light energy at which the conversion of light to current occurs called gap energy. If the light energy is lower than that no conversion can happen and if the light energy is higher the extra energy is converted to heat and only gap energy remains.

    Filtering UV would be a loss but a small one.

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    This is 36% MODULE efficiency with expensive cooling. 30% actual year long efficiency without it. Requires dual axis tracking. Seems heavy as its very tall/deep.

    Headline of cost reduction is very unlikely. Especially on a per acre/fairly large area basis. Dual axis tracking requires more spacing than fixed orientation rows, and loses benefits under cloudy conditions. While power at 7am and 5pm is more valuable when competing against high penetration solar, batteries are now more competitive than tracking, and can serve edge of day and night power needs. Tracking solar tends not to be built anymore, due to low cost of panels. The cooling infrastructure is also not as useful as it is on rooftops because the heat capture has useful benefits for homes.

    It is also unclear how this has advantage over parabolic mirror.

    Agri PV is a real use case, where more free land means more land use, even if most of it gets more shade, except around noon.

  • Maybe I'm misunderstanding but wouldn't diffuse light be what it's going to be best at? While it'd be worse on a sunny day when there is an optimal single direction for the light to come in?

    It's the opposite of a light house fresnel lens - instead of scattering the light source evenly out, it'll capture diffuse incoming rays from random directions better and concentrate it on the photovoltaic cell? However it would be at the cost of being able to capture direct sunlight efficiently as only some of the lens would ever be in the best position to capture the direct rays?

    wouldn’t diffuse light be what it’s going to be best at? While it’d be worse on a sunny day when there is an optimal single direction for the light to come in?

    No. Concentrated solar requires perfect alignment, dual axis tracking, to the sun. diffuse light does not concentrate.

    A reasonable alternative design would be cheap ordinary PV cells with outward bubbles instead of inverted parabolas that would capture off axis light better on a fixed tilt.

  • I have not read the article yet, but I will be doing so after posting this. But from what I understand, concentrated cells via lenses already exist. The problem with them was keeping them cool.

    Going to go read the actual article now.

    Edit: Well, the article was very sparse on details. From what I understand of the comments, what's really been done here is making cells that can stand the kind of heat that would be focused onto them from the glass.

    I want to say I saw a video about this a year ago or so, but it was more solar thermal, where you focus a bunch of mirrors onto a single point high up on a tower, and it's cooled by molten salt. But as I said, that's solar thermal, not solar power electricity.

    I think their approach with module is 20-50x concentration instead of 500x, with cooling permitted to be module wide on air gap, as well as usual bottom cooling.

  • Adding to what Eldest_Malk said: They aren't just putting a new type of lens over standard solar cells, they are also designing/fabricating custom cells to work with the lenses. [I'm not a PV expert, but the fact that the IEEE paper focuses so much on the cells and not just the lenses leads me to believe that the lenses can't just be used with whatever standardized solar cells are on the market]

    The cells are super expensive but super small. They need cooling for efficiency, but if the heat moving is useful, can ignore the energy cost.

  • The scale seems to fit, but what the hell is going on with those tick labels?

    Looks like they wanted 'roundish' numbers.

  • This is 36% MODULE efficiency with expensive cooling. 30% actual year long efficiency without it. Requires dual axis tracking. Seems heavy as its very tall/deep.

    Headline of cost reduction is very unlikely. Especially on a per acre/fairly large area basis. Dual axis tracking requires more spacing than fixed orientation rows, and loses benefits under cloudy conditions. While power at 7am and 5pm is more valuable when competing against high penetration solar, batteries are now more competitive than tracking, and can serve edge of day and night power needs. Tracking solar tends not to be built anymore, due to low cost of panels. The cooling infrastructure is also not as useful as it is on rooftops because the heat capture has useful benefits for homes.

    It is also unclear how this has advantage over parabolic mirror.

    Agri PV is a real use case, where more free land means more land use, even if most of it gets more shade, except around noon.

    Solar panels as fences is what is needed.

  • Solar panels as fences is what is needed.

    Kinda works if you use bifacial panels.

  • Yeah the problem has always been that solar panels only really like to operate within a very narrow temperature band. It's why you can't just plate the Sahara desert in solar panels. In theory that would generate loads of power but the heat of the desert is way outside of their operating range.

    There's been loads of ideas to heat/cool solar panels, the problem up until now has always been to do that without cutting into the panel's efficiency so much that it isn't worth doing.

    But there's been videos on YouTube of people cooling solar panels with plasma cooling and phase change materials for a few years now.

    I've been thinking about getting solar for a while, how bad is the efficiency loss at -30C to -20C?

  • Yeah the problem has always been that solar panels only really like to operate within a very narrow temperature band. It's why you can't just plate the Sahara desert in solar panels. In theory that would generate loads of power but the heat of the desert is way outside of their operating range.

    There's been loads of ideas to heat/cool solar panels, the problem up until now has always been to do that without cutting into the panel's efficiency so much that it isn't worth doing.

    But there's been videos on YouTube of people cooling solar panels with plasma cooling and phase change materials for a few years now.

    the heat of the desert is way outside of their operating range.

    I live in the Phoenix area, there are tons of solar installations here. In fact my house has solar, had it when we bought it 10 years ago, and it cuts the power bill in half.

  • One Law to Rule Them All: The Iron Law of Software Performance

    Technology technology
    1
    1
    32 Stimmen
    1 Beiträge
    1 Aufrufe
    Niemand hat geantwortet
  • 11 Stimmen
    9 Beiträge
    44 Aufrufe
    S
    TIL, thank you!
  • Nexus Mods to Enforce Digital ID Age Checks Under UK and EU Laws

    Technology technology
    60
    1
    188 Stimmen
    60 Beiträge
    322 Aufrufe
    F
    No, they banned it because they don’t like pride flags being replaced, or male and female being the sex options, or black characters being replaced with more historically accurate white ones (no issue with the opposite though, shock horror). It had nothing to do with trolling or the comments section or throwaway accounts. It was ideological. Yes, they can do what they want with their site. I agree. I didn’t say they can’t. I just pointed out what they do. If they banned mods that put pride flags everywhere it wouldn’t bother me one bit. People can mod their single player games however they want, I don’t care.
  • 337 Stimmen
    19 Beiträge
    109 Aufrufe
    R
    What I'm speaking about is that it should be impossible to do some things. If it's possible, they will be done, and there's nothing you can do about it. To solve the problem of twiddled social media (and moderation used to assert dominance) we need a decentralized system of 90s Web reimagined, and Fediverse doesn't deliver it - if Facebook and Reddit are feudal states, then Fediverse is a confederation of smaller feudal entities. A post, a person, a community, a reaction and a change (by moderator or by the user) should be global entities (with global identifiers, so that the object by id of #0000001a2b3c4d6e7f890 would be the same object today or 10 years later on every server storing it) replicated over a network of servers similarly to Usenet (and to an IRC network, but in an IRC network servers are trusted, so it's not a good example for a global system). Really bad posts (or those by persons with history of posting such) should be banned on server level by everyone. The rest should be moderated by moderator reactions\changes of certain type. Ideally, for pooling of resources and resilience, servers would be separated by types into storage nodes (I think the name says it, FTP servers can do the job, but no need to be limited by it), index nodes (scraping many storage nodes, giving out results in structured format fit for any user representation, say, as a sequence of posts in one community, or like a list of communities found by tag, or ... , and possibly being connected into one DHT for Kademlia-like search, since no single index node will have everything), and (like in torrents?) tracker nodes for these and for identities, I think torrent-like announce-retrieve service is enough - to return a list of storage nodes storing, say, a specified partition (subspace of identifiers of objects, to make looking for something at least possibly efficient), or return a list of index nodes, or return a bunch of certificates and keys for an identity (should be somehow cryptographically connected to the global identifier of a person). So when a storage node comes online, it announces itself to a bunch of such trackers, similarly with index nodes, similarly with a user. One can also have a NOSTR-like service for real-time notifications by users. This way you'd have a global untrusted pooled infrastructure, allowing to replace many platforms. With common data, identities, services. Objects in storage and index services can be, say, in a format including a set of tags and then the body. So a specific application needing to show only data related to it would just search on index services and display only objects with tags of, say, "holo_ns:talk.bullshit.starwars" and "holo_t:post", like a sequence of posts with ability to comment, or maybe it would search objects with tags "holo_name:My 1999-like Star Wars holopage" and "holo_t:page" and display the links like search results in Google, and then clicking on that you'd see something presented like a webpage, except links would lead to global identifiers (or tag expressions interpreted by the particular application, who knows). (An index service may return, say, an array of objects, each with identifier, tags, list of locations on storage nodes where it's found or even bittorrent magnet links, and a free description possibly ; then the user application can unify responses of a few such services to avoid repetitions, maybe sort them, represent them as needed, so on.) The user applications for that common infrastructure can be different at the same time. Some like Facebook, some like ICQ, some like a web browser, some like a newsreader. (Star Wars is not a random reference, my whole habit of imagining tech stuff is from trying to imagine a science fiction world of the future, so yeah, this may seem like passive dreaming and it is.)
  • The effects of AI on firms and workers

    Technology technology
    4
    1
    12 Stimmen
    4 Beiträge
    33 Aufrufe
    brobot9000@lemmy.worldB
    Your response is: want to be more productive? Replace the CEO and pointless middle management with Ai! Image how much money the shareholders would save!
  • New "subguides" on my guide to Pocket alternatives

    Technology technology
    1
    5 Stimmen
    1 Beiträge
    11 Aufrufe
    Niemand hat geantwortet
  • 236 Stimmen
    80 Beiträge
    358 Aufrufe
    R
    Yeah, but that's a secondary attribute. The new ones are stupid front and center.
  • U.S.-Sanctioned Terrorists Enjoy Premium Boost on X

    Technology technology
    5
    1
    90 Stimmen
    5 Beiträge
    38 Aufrufe
    M
    Yeah but considering who's in charge of the government, half of us will be hit with that designation sooner or later.