Skip to content

Scientists make game-changing breakthrough that could slash costs of solar panels: 'Has the potential to contribute to the energy transition'

Technology
118 82 0
  • This was my first question too! I thought heat makes them wear out faster.

    It does. Also seems weird nobody thought of a magnifying glass before.

    But its also the beauty in science. Now somebody else thought about it, and they might work harder to fix the next problem: Heat.

    If that gets better now, solar panels will increase in output even more. There are so many technologies going into one product, and each field have its own experts.

    I'm excited.

  • Hey it's those guys that invented MP3s.

    It really whips the sun's ass.

  • I'm not sure what to think about the Fraunhofer institute in general. They have made some nice discoveries/inventions in the past, such as audio compression algorithms and such. That is why i hyped them for a bit.

    But they really disappointed me with their writings on solar panels in the past few years.

    They said that the efficiency of solar panels today is too low to deploy them widely in practice, which is simply not true. They tried pushing Perovskite solar cells for no reason.

    I'm not sure what to think about this article's idea. On one hand, adding lenses to solar parks makes them significantly more complicated and therefore expensive to build. Also, if the parks have complicated physical forms, they're more susceptible to wind, and that could damage them.

    On the other hand, yes, adding lenses means you need fewer actual solar panels for the same amount of energy harvested.

    I'll therefore put it in the category of inconclusive inventions, together with the idea of adding a motor to the solar panels so they can track the sun. That would also make the solar panels more efficient, but also more complicated and more prone to mechanical failure.

    well, adding lenses kinda requires motorizing the panels to track the sun, right? otherwise the "hot spot" is going to move around across the day/year

    is there a way to shape the lens to mitigate this?

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    I thought this has already been done. Guess there's some nuance to it that is above my understanding of it.

    Anyhow, advancements in solar are cool in my book.

  • well, adding lenses kinda requires motorizing the panels to track the sun, right? otherwise the "hot spot" is going to move around across the day/year

    is there a way to shape the lens to mitigate this?

    You make them convex.

    You can shape them that no matter how the light falls on it, it will align to the center. Kind of like how satellite dishes work but in reverse.

  • well, adding lenses kinda requires motorizing the panels to track the sun, right? otherwise the "hot spot" is going to move around across the day/year

    is there a way to shape the lens to mitigate this?

    Could have some refraction or hologram thing that bends the light the right way, maybe? Or like a matte glass that equalises the load.

    Or why not just use (big) mirrors?

    Won't help with heat ofc!

  • It does. Also seems weird nobody thought of a magnifying glass before.

    But its also the beauty in science. Now somebody else thought about it, and they might work harder to fix the next problem: Heat.

    If that gets better now, solar panels will increase in output even more. There are so many technologies going into one product, and each field have its own experts.

    I'm excited.

    They probably did, but like they said, the heating is probably the issue.

    I can see them adding a cooling element. Maybe even water cooling.

  • Hey it's those guys that invented MP3s.

    Lossy compression of sunlight?

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    I have not read the article yet, but I will be doing so after posting this. But from what I understand, concentrated cells via lenses already exist. The problem with them was keeping them cool.

    Going to go read the actual article now.

    Edit: Well, the article was very sparse on details. From what I understand of the comments, what's really been done here is making cells that can stand the kind of heat that would be focused onto them from the glass.

    I want to say I saw a video about this a year ago or so, but it was more solar thermal, where you focus a bunch of mirrors onto a single point high up on a tower, and it's cooled by molten salt. But as I said, that's solar thermal, not solar power electricity.

  • Hey it's those guys that invented MP3s.

    That was Fraunhofer IIS not ISE.

  • Grid forming will just mean the keep running the house when the power goes off, it's not safe for them to be pushing power when it's disappeared, that has been set by regulation in many countries.

    Small scale installations on regular houses are probably not the best for grid forming. Any pv installation with grid forming capability would be required to give some control to the grid operator because it's their job to keep the grid stable.

  • I have not read the article yet, but I will be doing so after posting this. But from what I understand, concentrated cells via lenses already exist. The problem with them was keeping them cool.

    Going to go read the actual article now.

    Edit: Well, the article was very sparse on details. From what I understand of the comments, what's really been done here is making cells that can stand the kind of heat that would be focused onto them from the glass.

    I want to say I saw a video about this a year ago or so, but it was more solar thermal, where you focus a bunch of mirrors onto a single point high up on a tower, and it's cooled by molten salt. But as I said, that's solar thermal, not solar power electricity.

    Yeah the problem has always been that solar panels only really like to operate within a very narrow temperature band. It's why you can't just plate the Sahara desert in solar panels. In theory that would generate loads of power but the heat of the desert is way outside of their operating range.

    There's been loads of ideas to heat/cool solar panels, the problem up until now has always been to do that without cutting into the panel's efficiency so much that it isn't worth doing.

    But there's been videos on YouTube of people cooling solar panels with plasma cooling and phase change materials for a few years now.

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    "The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions"

    Why would I want to compare one panel's average efficiency to another panels efficiency in ideal conditions?

  • "The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions"

    Why would I want to compare one panel's average efficiency to another panels efficiency in ideal conditions?

    Marketing. Fresnel lenses are not going to do well with diffuse light.

  • Even crazier that it's a logarithmic graph.

    The scale seems to fit, but what the hell is going on with those tick labels?

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    Banned in North America in 3... 2...

  • You make them convex.

    You can shape them that no matter how the light falls on it, it will align to the center. Kind of like how satellite dishes work but in reverse.

    You can shape them that no matter how the light falls on it, it will align to the center. Kind of like how satellite dishes work but in reverse.

    how do you do this, actually? I'm curious about the details because I just watched a video on compound parabolic reflectors, haha

    a regular (ideal) convex lens with a single focal point will have the image move around as the light source moves across the sky. AFAIK satellite dishes tend to be paraboloids, which focus parallel rays onto the focal point, and if you change the angle of the light source, you'll start losing focus. Stuff like the DSN and radio telescopes absolutely do have to aim and track their targets (or are forced to follow the rotation of the earth).

    satellite dishes that are aimed towards geostationary satellites don't have to move (because their targets are stationary in the sky), while stuff like starlink tracks targets with a phased array.

  • Marketing. Fresnel lenses are not going to do well with diffuse light.

    Maybe I'm misunderstanding but wouldn't diffuse light be what it's going to be best at? While it'd be worse on a sunny day when there is an optimal single direction for the light to come in?

    It's the opposite of a light house fresnel lens - instead of scattering the light source evenly out, it'll capture diffuse incoming rays from random directions better and concentrate it on the photovoltaic cell? However it would be at the cost of being able to capture direct sunlight efficiently as only some of the lens would ever be in the best position to capture the direct rays?

  • Could have some refraction or hologram thing that bends the light the right way, maybe? Or like a matte glass that equalises the load.

    Or why not just use (big) mirrors?

    Won't help with heat ofc!

    Or why not just use (big) mirrors?

    I mean, this is a thing with solar concentrators already, haha

    and for those the heat is a feature 😛

  • That was Fraunhofer IIS not ISE.

    Fraunhofer IIS and Fraunhofer ISE are part of the same organization.

    They are different institutes in the same Fraunhofer Society.

  • 33 Stimmen
    5 Beiträge
    46 Aufrufe
    D
    If it's so good then why does deepseek-qwen slap
  • 42 Stimmen
    11 Beiträge
    74 Aufrufe
    P
    That takes zero ingenuity.
  • Queer Dating Apps: Beware Who You Trust With Your Intimate Data

    Technology technology
    1
    1
    72 Stimmen
    1 Beiträge
    12 Aufrufe
    Niemand hat geantwortet
  • 144 Stimmen
    16 Beiträge
    80 Aufrufe
    B
    I know there decent alternatives to SalesForce, but I’m not sure what you’d replace Slack with. Teams is far worse in every conceivable way and I’m not sure if there’s anything else out there that isn’t already speeding down the enshittification highway.
  • Role of Email Deliverability Consulting in ROI

    Technology technology
    1
    2
    0 Stimmen
    1 Beiträge
    15 Aufrufe
    Niemand hat geantwortet
  • 1 Stimmen
    2 Beiträge
    16 Aufrufe
    A
    If you're a developer, a startup founder, or part of a small team, you've poured countless hours into building your web application. You've perfected the UI, optimized the database, and shipped features your users love. But in the rush to build and deploy, a critical question often gets deferred: is your application secure? For many, the answer is a nervous "I hope so." The reality is that without a proper defense, your application is exposed to a barrage of automated attacks hitting the web every second. Threats like SQL Injection, Cross-Site Scripting (XSS), and Remote Code Execution are not just reserved for large enterprises; they are constant dangers for any application with a public IP address. The Security Barrier: When Cost and Complexity Get in the Way The standard recommendation is to place a Web Application Firewall (WAF) in front of your application. A WAF acts as a protective shield, inspecting incoming traffic and filtering out malicious requests before they can do any damage. It’s a foundational piece of modern web security. So, why doesn't everyone have one? Historically, robust WAFs have been complex and expensive. They required significant budgets, specialized knowledge to configure, and ongoing maintenance, putting them out of reach for students, solo developers, non-profits, and early-stage startups. This has created a dangerous security divide, leaving the most innovative and resource-constrained projects the most vulnerable. But that is changing. Democratizing Security: The Power of a Community WAF Security should be a right, not a privilege. Recognizing this, the landscape is shifting towards more accessible, community-driven tools. The goal is to provide powerful, enterprise-grade protection to everyone, for free. This is the principle behind the HaltDos Community WAF. It's a no-cost, perpetually free Web Application Firewall designed specifically for the community that has been underserved for too long. It’s not a stripped-down trial version; it’s a powerful security tool designed to give you immediate and effective protection against the OWASP Top 10 and other critical web threats. What Can You Actually Do with It? With a community WAF, you can deploy a security layer in minutes that: Blocks Malicious Payloads: Get instant, out-of-the-box protection against common attack patterns like SQLi, XSS, RCE, and more. Stops Bad Bots: Prevent malicious bots from scraping your content, attempting credential stuffing, or spamming your forms. Gives You Visibility: A real-time dashboard shows you exactly who is trying to attack your application and what methods they are using, providing invaluable security intelligence. Allows Customization: You can add your own custom security rules to tailor the protection specifically to your application's logic and technology stack. The best part? It can be deployed virtually anywhere—on-premises, in a private cloud, or with any major cloud provider like AWS, Azure, or Google Cloud. Get Started in Minutes You don't need to be a security guru to use it. The setup is straightforward, and the value is immediate. Protecting the project, you've worked so hard on is no longer a question of budget. Download: Get the free Community WAF from the HaltDos site. Deploy: Follow the simple instructions to set it up with your web server (it’s compatible with Nginx, Apache, and others). Secure: Watch the dashboard as it begins to inspect your traffic and block threats in real-time. Security is a journey, but it must start somewhere. For developers, startups, and anyone running a web application on a tight budget, a community WAF is the perfect first step. It's powerful, it's easy, and it's completely free.
  • Telegram partners with xAI to bring Grok to over a billion users

    Technology technology
    36
    1
    38 Stimmen
    36 Beiträge
    162 Aufrufe
    R
    So you pay taxes to Putin. Good to know who actually helps funding the regime. I suggest you go someplace else. I won't take this from a jerk from likely one of the countries buying fossil fuels from said regime, that have also supported it after a few falsified elections starting in 1996, which is also the year I was born. And of course "paying taxes to Putin" can't be even compared to what TG is doing, so just shut up and go do something you know how to do, like I dunno what.
  • 5 Stimmen
    6 Beiträge
    35 Aufrufe
    B
    Oh sorry, my mind must have been a bit foggy when I read that. We agree 100%