Skip to content

Scientists make game-changing breakthrough that could slash costs of solar panels: 'Has the potential to contribute to the energy transition'

Technology
118 82 0
  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    What are concentrating photovoltaics?
    One of the ways to increase the output from the photovoltaic systems is to supply concentrated light onto the PV cells. This can be done by using optical light collectors, such as lenses or mirrors. The PV systems that use concentrated light are called concentrating photovoltaics (CPV). The CPV collect light from a larger area and concentrate it to a smaller area solar cell. This is illustrated in Figure 5.1.

    Also, from the article - 33.6% efficiency in real-world conditions:

    A 60 cell-lens prototype was studied for a year. In "real-world" conditions, CPVs achieved up to 33.6% efficiency. The 36% mark was posted at 167 degrees Fahrenheit. The prototype showed no signs of degradation, according to IE.

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    is it a real thing or an obligatory overestimated result to get grants because the system is fucked?

  • What are concentrating photovoltaics?
    One of the ways to increase the output from the photovoltaic systems is to supply concentrated light onto the PV cells. This can be done by using optical light collectors, such as lenses or mirrors. The PV systems that use concentrated light are called concentrating photovoltaics (CPV). The CPV collect light from a larger area and concentrate it to a smaller area solar cell. This is illustrated in Figure 5.1.

    Also, from the article - 33.6% efficiency in real-world conditions:

    A 60 cell-lens prototype was studied for a year. In "real-world" conditions, CPVs achieved up to 33.6% efficiency. The 36% mark was posted at 167 degrees Fahrenheit. The prototype showed no signs of degradation, according to IE.

    A lighthouse uses the same lens, just with the light coming from the inside. Since this is old knowledge, what is the drawback? Why isn't this widespread?

    My completely uninformed guess:

    • The lens and assembly costs too much compared to just more solar panels

    • The lens/panel combo is so bulky/prone to failure it becomes unreasonable to actually install/use.

  • A lighthouse uses the same lens, just with the light coming from the inside. Since this is old knowledge, what is the drawback? Why isn't this widespread?

    My completely uninformed guess:

    • The lens and assembly costs too much compared to just more solar panels

    • The lens/panel combo is so bulky/prone to failure it becomes unreasonable to actually install/use.

    The article states that it’s smaller and cheaper. The reason it’s not widespread is that they just invented it.

  • is it a real thing or an obligatory overestimated result to get grants because the system is fucked?

    I just skimmed the IEEE paper (peer-reviewed, solid journal); The usage of 'slash costs' in the title is entire sensational. The tech gave a SLIGHT increase in efficiency (which is good news - marginal improvements are still very good and can be game-changing if scaled up), but there is no cost/benefit analysis in the paper regarding the additional costs of lenses and whether the increased PV efficiency would offset those costs at scale.

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    Wouldn't this be negated by the fact, that the same area of roof now has less actual PV cell on it? Since the light gets concentrated on a smaller area?

  • A lighthouse uses the same lens, just with the light coming from the inside. Since this is old knowledge, what is the drawback? Why isn't this widespread?

    My completely uninformed guess:

    • The lens and assembly costs too much compared to just more solar panels

    • The lens/panel combo is so bulky/prone to failure it becomes unreasonable to actually install/use.

    Adding to what Eldest_Malk said: They aren't just putting a new type of lens over standard solar cells, they are also designing/fabricating custom cells to work with the lenses. [I'm not a PV expert, but the fact that the IEEE paper focuses so much on the cells and not just the lenses leads me to believe that the lenses can't just be used with whatever standardized solar cells are on the market]

  • A lighthouse uses the same lens, just with the light coming from the inside. Since this is old knowledge, what is the drawback? Why isn't this widespread?

    My completely uninformed guess:

    • The lens and assembly costs too much compared to just more solar panels

    • The lens/panel combo is so bulky/prone to failure it becomes unreasonable to actually install/use.

    They mention standardisations and cost savings in their paper, as well as solving the heat load per cell problem by decreasing cell size. They also mention that there's been a lot of micro-CPV module designs but that they haven't been scaled up. Some quotes below:

    Various researchers and developers have been exploring different micro-CPV module designs [5], [6], [7], [8], [9], [10], [11], [12], [13]. Most approaches have been tested on small prototypes or minimodules, while fewer have been realized with aperture areas (Aap) above 200 and 800 cm2,[...]

    By decreasing the sizes of the primary optics and the solar cells, the heat load per cell is minimized. This reduction allows for sufficient heat spreading via the circuit board, enabling the direct assembly of solar cells onto the circuit board on glass.

    At Fraunhofer ISE, we have developed a micro-CPV module concept [17], [18], [19], [20], [21], which is based on parallelized manufacturing processes and commercially available components.

    The final module features a panel size of 24” × 18”, which is a standard in the microelectronics industry, facilitating machine adaption without necessitating special adjustments.

  • Wouldn't this be negated by the fact, that the same area of roof now has less actual PV cell on it? Since the light gets concentrated on a smaller area?

    I think the idea is that it’s the same amount of light is being used but the actual expensive part of the solar cell is cheaper and designed to take the increased heat. So the same size “solar unit” on the roof collecting the same amount of light and generating the same amount of energy but cheaper overall. At least that was my take. Correct me if I’m wrong.

  • Wouldn't this be negated by the fact, that the same area of roof now has less actual PV cell on it? Since the light gets concentrated on a smaller area?

    I think the point is that you can replace one big solar panel with one big lens and a small solar panel. The footprint on the roof is the same, but the implication is a big glass lens is cheaper than a big solar panel.

  • The article states that it’s smaller and cheaper. The reason it’s not widespread is that they just invented it.

    It is interesting that someone just recently thought to use a fresnel lens with photovoltaics when they’ve existed for hundreds of years

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    I am not a scientist so please correct me if I am off base, but did it really take them this long to attempt to focus light onto PV cells using a fresnel lens?

    My hobby as a 15 year old was buying broken projectors to harvest the fresnel lenses in the lamp on top. They could focus sunlight so powerfully that you could burn shit. I didn't do that, surprisingly. I was like Marge Simpson, I just thought they were neat.

  • It is interesting that someone just recently thought to use a fresnel lens with photovoltaics when they’ve existed for hundreds of years

    This is exactely how most inventions are made: put together two things from different realms that might have a good fit.

    Just wait a few years and they will find a way to use the light directly instead transferring it into electricity. There‘re some IC‘s that already use light instead of voltage to compute.

  • I just skimmed the IEEE paper (peer-reviewed, solid journal); The usage of 'slash costs' in the title is entire sensational. The tech gave a SLIGHT increase in efficiency (which is good news - marginal improvements are still very good and can be game-changing if scaled up), but there is no cost/benefit analysis in the paper regarding the additional costs of lenses and whether the increased PV efficiency would offset those costs at scale.

    Honestly, we don't need the technology to get any better than it is. It's nice, but not necessary. Labor costs of deployment are the biggest limiting factor.

  • It is interesting that someone just recently thought to use a fresnel lens with photovoltaics when they’ve existed for hundreds of years

    It isn't that. They have been talking about Fresnel lenses on PV for decades. It's solving the heat issue and the size issue. A Fresnel lens gathers a large area of light and focuses it down, including focusing the heat. Normal PV cells cannot handle that amount of heat.

  • I am not a scientist so please correct me if I am off base, but did it really take them this long to attempt to focus light onto PV cells using a fresnel lens?

    My hobby as a 15 year old was buying broken projectors to harvest the fresnel lenses in the lamp on top. They could focus sunlight so powerfully that you could burn shit. I didn't do that, surprisingly. I was like Marge Simpson, I just thought they were neat.

    IIRC, this sort of thing has been floated before. The issue is that you can't just focus that much light on the solar cell. It'll burn out.

  • I am not a scientist so please correct me if I am off base, but did it really take them this long to attempt to focus light onto PV cells using a fresnel lens?

    My hobby as a 15 year old was buying broken projectors to harvest the fresnel lenses in the lamp on top. They could focus sunlight so powerfully that you could burn shit. I didn't do that, surprisingly. I was like Marge Simpson, I just thought they were neat.

    OK, take that Fresnel lens that you were using to melt pennies and then focus it on a PV cell that is also made of metal. What might be the expected response? The science in this case is making PV cells that can handle the intense heat.

  • cross-posted from: https://slrpnk.net/post/24690127

    Solar energy experts in Germany are putting sun-catching cells under the magnifying glass with astounding results, according to multiple reports.

    The Fraunhofer Institute for Solar Energy Systems team is perfecting the use of lenses to concentrate sunlight onto solar panels, reducing size and costs while increasing performance, Interesting Engineering and PV Magazine reported.

    The "technology has the potential to contribute to the energy transition, facilitating the shift toward more sustainable and renewable energy sources by combining minimal carbon footprint and energy demand with low levelized cost of electricity," the researchers wrote in a study published by the IEEE Journal of Photovoltaics.

    The sun-catcher is called a micro-concentrating photovoltaic, or CPV, cell. The lens makes it different from standard solar panels that convert sunlight to energy with average efficiency rates around 20%, per MarketWatch. Fraunhofer's improved CPV cell has an astounding 36% rate in ideal conditions and is made with lower-cost parts. It cuts semiconductor materials "by a factor of 1,300 and reduces module areas by 30% compared to current state-of-the-art CPV systems," per IE.

    How does concentrating the sunlight like this not start a fire? Or wouldn’t this at least cause panel electronics to overheat?

  • I am not a scientist so please correct me if I am off base, but did it really take them this long to attempt to focus light onto PV cells using a fresnel lens?

    My hobby as a 15 year old was buying broken projectors to harvest the fresnel lenses in the lamp on top. They could focus sunlight so powerfully that you could burn shit. I didn't do that, surprisingly. I was like Marge Simpson, I just thought they were neat.

    Not being any kind of solar energy expert, my initial thought was how the cell’s would hold up under the increased heat, and what technology (if any) they’d be using to monitor/mitigate. The article does briefly mention the cells achieving ~33% @ ~167° F, and does mention (what seems to be tangential) technologies that allow for cells to be nailed down as if they were shingles.

    My guess is that it isn’t that they finally using techniques that seem obvious to us, but that they’ve developed supporting tech to mitigate the detrimental effects of using magnification.

  • I am not a scientist so please correct me if I am off base, but did it really take them this long to attempt to focus light onto PV cells using a fresnel lens?

    My hobby as a 15 year old was buying broken projectors to harvest the fresnel lenses in the lamp on top. They could focus sunlight so powerfully that you could burn shit. I didn't do that, surprisingly. I was like Marge Simpson, I just thought they were neat.

    Adding to what the others wrote, solar cells become less efficient at power conversion (light -> electricity) as the temp of the solar cell materials (semiconductors) increases. So the issues is how to get more photons to the semiconductor without heating it up.

  • 0 Stimmen
    1 Beiträge
    7 Aufrufe
    Niemand hat geantwortet
  • 93 Stimmen
    2 Beiträge
    14 Aufrufe
    U
    Still, a 2025 University of Arizona study that interviewed farmers and government officials in Pinal County, Arizona, found that a number of them questioned agrivoltaics’ compatibility with large-scale agriculture. “I think it’s a great idea, but the only thing … it wouldn’t be cost-efficient … everything now with labor and cost of everything, fuel, tractors, it almost has to be super big … to do as much with as least amount of people as possible,” one farmer stated. Many farmers are also leery of solar, worrying that agrivoltaics could take working farmland out of use, affect their current operations or deteriorate soils. Those fears have been amplified by larger utility-scale initiatives, like Ohio’s planned Oak Run Solar Project, an 800 megawatt project that will include 300 megawatts of battery storage, 4,000 acres of crops and 1,000 grazing sheep in what will be the country’s largest agrivoltaics endeavor to date. Opponents of the project worry about its visual impacts and the potential loss of farmland.
  • 254 Stimmen
    40 Beiträge
    163 Aufrufe
    dojan@pawb.socialD
    It is a direct result of structural racism, as it's a product of the treatment of white men as being the default. You see it all the time in medicine. There are conditions that disproportionately affect black people that we don't know enough about because time and money hasn't been spent studying it. Women face the same problem. Lots of conditions apply differently in women. An example of this being why women historically have been underrepresented in e.g. autism diagnoses. It presents differently so for a while the assumption was made that women just can't be autistic. I don't think necessarily that people who perpetuate this problem are doing so out of malice, they probably don't think of women/black people as lesser (hell, many probably are women and/or black), but it doesn't change the fact that structural problems requires awareness and conscious effort to correct.
  • 254 Stimmen
    14 Beiträge
    79 Aufrufe
    S
    According to the case website, it looks like it's only people who own a device made by Google that runs their voice assistant. So, Samsung Android users are not included, but anyone with a Google Home device or a Chromecast is included
  • 68 Stimmen
    4 Beiträge
    30 Aufrufe
    O
    This is also going to be used against the general populace. Setting up the Techno-Fuedal Surveillance state. The Militaries of the future will be policing their own countries more and more. Very soon the regular police will all have masks and blacked out helmets.
  • Microsoft's AI Secretly Copying All Your Private Messages

    Technology technology
    4
    1
    0 Stimmen
    4 Beiträge
    33 Aufrufe
    S
    Forgive me for not explaining better. Here are the terms potentially needing explanation. Provisioning in this case is initial system setup, the kind of stuff you would do manually after a fresh install, but usually implies a regimented and repeatable process. Virtual Machine (VM) snapshots are like a save state in a game, and are often used to reset a virtual machine to a particular known-working condition. Preboot Execution Environment (PXE, aka ‘network boot’) is a network adapter feature that lets you boot a physical machine from a hosted network image rather than the usual installation on locally attached storage. It’s probably tucked away in your BIOS settings, but many computers have the feature since it’s a common requirement in commercial deployments. As with the VM snapshot described above, a PXE image is typically a known-working state that resets on each boot. Non-virtualized means not using hardware virtualization, and I meant specifically not running inside a virtual machine. Local-only means without a network or just not booting from a network-hosted image. Telemetry refers to data collecting functionality. Most software has it. Windows has a lot. Telemetry isn’t necessarily bad since it can, for example, help reveal and resolve bugs and usability problems, but it is easily (and has often been) abused by data-hungry corporations like MS, so disabling it is an advisable precaution. MS = Microsoft OSS = Open Source Software Group policies are administrative settings in Windows that control standards (for stuff like security, power management, licensing, file system and settings access, etc.) for user groups on a machine or network. Most users stick with the defaults but you can edit these yourself for a greater degree of control. Docker lets you run software inside “containers” to isolate them from the rest of the environment, exposing and/or virtualizing just the resources they need to run, and Compose is a related tool for defining one or more of these containers, how they interact, etc. To my knowledge there is no one-to-one equivalent for Windows. Obviously, many of these concepts relate to IT work, as are the use-cases I had in mind, but the software is simple enough for the average user if you just pick one of the premade playbooks. (The Atlas playbook is popular among gamers, for example.) Edit: added explanations for docker and telemetry
  • 0 Stimmen
    3 Beiträge
    27 Aufrufe
    thehatfox@lemmy.worldT
    The platform owners don’t consider engagement to me be participation in meaningful discourse. Engagement to them just means staying on the platform while seeing ads. If bots keep people doing that those platforms will keep letting them in.
  • 0 Stimmen
    9 Beiträge
    39 Aufrufe
    kolanaki@pawb.socialK
    I kinda don't want anyone other than a doctor determining it, tbh. Fuck the human bean counters just as much as the AI ones. Hopefully we can just start growing organs instead of having to even make such a grim decision and everyone can get new livers. Even if they don't need them.