Prototype of RTX 5090 Appears With Four 16-Pin Power Connectors, Capable of Delivering 2,400W
-
3600W is the maximum a power socket is rated for and the fuse triggers at 3800W. So, cutting it pretty close.
I wouldn’t use that kind of power continuously. AFAIK the sockets are supposed to handle 16A for at least six hours, when they are new. When charging your car on Schuko sockets it’s good practice to limit it to 10A and check for the socket temperature after a while. Also, any connections in the cabling can have increased resistance with age and heat up with heavy continuous use. That shouldn’t matter that much when running a kettle or toaster for a few minutes, but charging a car or gaming for hours can become a problem.
-
If they need 2x12pin connectors they could go with the standard mobo ATX24, stable, sturdy.. hell, at this (powerl) point they could just use a 220V cord.
Are there many consumer PSU's with two ATX24 connectors? A quick search only shows Phanteks making one.
-
This post did not contain any content.
That's almost 1W per dollar!
-
And wiring is typically rated for current limits not voltage (within reason). Some 12 gauge wire doesn't care if you're pushing 12V, 120V, or 240V but is only rated for 20A.
The easiest way to think about it is that the conductor is rated for the current, and the insulator is rated for the voltage. Now, once you get into the nitty gritty, they're more intertwined than that, but it's close enough for a surface level explanation.
-
Are there many consumer PSU's with two ATX24 connectors? A quick search only shows Phanteks making one.
Nvidia controls enough of the market that more PSU manufacturers would if Nvidia needed it.
-
Most are actually 230V which is even more at standard 16A, 3680W to be precise.
Countries that use 110V have so many weird limitations that we don't even know in Europe. For them, 230V is the "special" outlet for special purposes.
Actually, in the US the outlets are often wired with 1 leg, while giving 2 legs gets you back to 240v.
110 is probably better in terms of general safety (which is good because our houses are death traps), but it means when you do need power you need a special circuit.
We should have both more common, but the plugs are terrible (basically they turn the left prong 90 deg).
-
What about the rest of the computer though?
3840W per breaker. Minus 2400 leaves 1440W, for a CPU, the minor components, and monitors/other equipment. In theory it could work.
-
In Europe, this is no biggie
I just saw a reputable 2400W kettle on a random online store for 50€
Looks like there are 3000W options too
I'm gonna oneup those kettles with >7500W showerheads
-
3840W per breaker. Minus 2400 leaves 1440W, for a CPU, the minor components, and monitors/other equipment. In theory it could work.
You would still need to run the computer off multiple plugs, as almost any 240v plug is 10a.
You'd likely need a dedicated breaker and plug, similar to a stove plug.
-
Actually, in the US the outlets are often wired with 1 leg, while giving 2 legs gets you back to 240v.
110 is probably better in terms of general safety (which is good because our houses are death traps), but it means when you do need power you need a special circuit.
We should have both more common, but the plugs are terrible (basically they turn the left prong 90 deg).
110 is probably better in terms of general safety
Eh, not really. There is no significant difference in safety between 110vac and 230vac. Voltage is not the (most) dangerous part, it's the amps that kill if you're electrocuted.
-
In Europe, this is no biggie
I just saw a reputable 2400W kettle on a random online store for 50€
Looks like there are 3000W options too
Standard US outlets can't deliver 3000 watts.
-
Actually, in the US the outlets are often wired with 1 leg, while giving 2 legs gets you back to 240v.
110 is probably better in terms of general safety (which is good because our houses are death traps), but it means when you do need power you need a special circuit.
We should have both more common, but the plugs are terrible (basically they turn the left prong 90 deg).
when you do need power you need a special circuit.
We also have a standard socket and a high power socket.
Expect our normal outlets provide 230V 16A 3.5kW (3kW sustained) and the typical high power outlets outlets provide 400V 30A 11kW or 400V 60A 21kW.
Which is why typical electric stoves here use 11kW and typical instant water heaters use 21kW.
Though probably the most noticeable advantage is in electric car charging.
-
Standard US outlets can't deliver 3000 watts.
That's why I started my sentence with "In Europe"
-
110 is probably better in terms of general safety
Eh, not really. There is no significant difference in safety between 110vac and 230vac. Voltage is not the (most) dangerous part, it's the amps that kill if you're electrocuted.
Amps are voltage over resistance (I = V/R), volts absolutely matter, the human body has a decent resistance and the higher voltage helps burn through that.
-
when you do need power you need a special circuit.
We also have a standard socket and a high power socket.
Expect our normal outlets provide 230V 16A 3.5kW (3kW sustained) and the typical high power outlets outlets provide 400V 30A 11kW or 400V 60A 21kW.
Which is why typical electric stoves here use 11kW and typical instant water heaters use 21kW.
Though probably the most noticeable advantage is in electric car charging.
Yeah, in Sweden I charge our plug in hybrid off 240, it's pretty quick and you can use any outlet.
The giant round connectors are weird BTW, with all the holes, trying to sort that out for faster charging.
I don't think we should run 100+ volts everywhere, we need to standardize on lvdc in most places (basically usb-c or so) with 100v only in kitchens and places you need it, because it's more dangerous and can cause fires more easily.
-
That's why I started my sentence with "In Europe"
But I live in America so naturally you're referring to US outlets, right??
-
Yeah, in Sweden I charge our plug in hybrid off 240, it's pretty quick and you can use any outlet.
The giant round connectors are weird BTW, with all the holes, trying to sort that out for faster charging.
I don't think we should run 100+ volts everywhere, we need to standardize on lvdc in most places (basically usb-c or so) with 100v only in kitchens and places you need it, because it's more dangerous and can cause fires more easily.
That's a common misconception. It's the Amps that cause fires, not the voltage.
The 5090 uses 600W, at 12V that's 50A, but at 120V that'd only be 5A and at 240V only 2.5A.
50A melts cables and burns your PC down, 2.5A won't. The only risk of higher voltages is that they can jump across small air gaps much easier.
-
Amps are voltage over resistance (I = V/R), volts absolutely matter, the human body has a decent resistance and the higher voltage helps burn through that.
There's a reason we talk about lethal current and not lethal voltage...30mA can kill you, even at something ridiculously low as 9V, but 5-10kV will not necessarily kill you, e.g. fences for horses will not kill you if you're electrocuted by them because there's basically no amperage. Voltage is not the determining factor in lethalness.
-
You would still need to run the computer off multiple plugs, as almost any 240v plug is 10a.
You'd likely need a dedicated breaker and plug, similar to a stove plug.
Here, plugs are 230V and 16A = 3680W. Not quite as much as I thought (most extension cords seem to be rated for a bit more, which makes sense), but definitely enough to run monitors of the same breaker.
-
That's a common misconception. It's the Amps that cause fires, not the voltage.
The 5090 uses 600W, at 12V that's 50A, but at 120V that'd only be 5A and at 240V only 2.5A.
50A melts cables and burns your PC down, 2.5A won't. The only risk of higher voltages is that they can jump across small air gaps much easier.
No it's not, I'm an ee.
P = I^2R, so power squares against the current, while it's linear to voltage.
This means current causes more heat dissipation in the wire, which has risks, potentially fire if you really go too far, this is why breakers trip.
But what really causes fires (again, outside of crazy overcurrent) is Arcing, from basically either bad connections or bad insulation, OR, from an inductive load that gets disconnected, so the current tries to stay constant in the coils, which leads to massive voltage spikes.